
A Model-Driven Platform for Software Applications
on Heterogeneous Computing Environments

Simone Bauco
University of Tor Vergata

Rome, Italy
simone.bauco@uniroma2.it

Guglielmo De Angelis
IASI-CNR
Rome, Italy

guglielmo.deangelis@iasi.cnr.it

Romolo Marotta
University of Tor Vergata

Rome, Italy
r.marotta@ing.uniroma2.it

Alessandro Pellegrini
University of Tor Vergata

Rome, Italy
a.pellegrini@ing.uniroma2.it

Abstract—The rise of heterogeneous computing environments
has significantly advanced the capabilities of high-performance
concurrent applications. However, the design of applications for
these environments requires ICT application experts to have a
deep understanding of hardware aspects and often their related
optimisation strategies. As a consequence, the effort in the
development phase is strongly influenced by intricate technical
hindrances rather than focusing on domain-specific issues. This
work presents Domain, a software platform that supports ICT
experts in taming the complexity of modern hardware envi-
ronments. Specifically, Domain identifies a comprehensive socio-
technical environment where classes of stakeholders cooperate in
order to support the development of software applications for
heterogeneous computing environments. Also, Domain proposes
families of software assets that promote the adoption of domain-
specific notations, their automatic refinement up to the generation
of hardware-specific binaries, and the optimised execution of such
binaries on the target hardware resources. The proposed software
platform has been applied to a first case study in the domain
of speculative stream processing on the Taxi and Limousine
Commission Trip data records from the New York City area.

Index Terms—MDE, Software Architecture, Actor Model,
Heterogeneous Architectures

I. INTRODUCTION

The rise of heterogeneous computing environments that
combine CPUs, GPUs, and FPGAs or offer non-uniform mem-
ory access (NUMA) has significantly advanced the capabilities
of high-performance concurrent applications, particularly in
domains that require intensive computation [1, 2]. However,
these environments also introduce complexity, as leveraging
the diverse capabilities of different processing units often
requires a deep understanding of details on hardware aspects
and low-level optimisations [3]. Indeed, applications must
be redesigned to use the underlying hardware effectively,
by anticipating aspects of parallel programming since the
early stages of the design phases, which instead should be
more oriented to the definition of an architecture-independent
specification of the expected applications.

At the same time, most of the ICT applications from a
wide range of different domains compelled compliance with
continuously evolving requirements on their efficiency. The
respective experts yearn to be more focused on domain-
specific issues rather than on intricate technical hindrances.

A recurring strategy applied to cope with these kinds of
challenges relies on accepting heterogeneity as a fact and

pursues the adoption of abstraction levels that mitigate the
gap between the domain-specific knowledge of ICT experts
and the different technological concerns.

In this sense, software architectures [4, 5] (SAs) give the
possibility to reason on a system in terms of a set of design
concepts that can be properly interconnected in order to
cooperatively offer some functionality. An architectural style
typically defines the design concepts that can be referred in a
SA as well as the rules for composing them. In this sense, SAs
emphasise some structural/behavioural aspects of a considered
software system, hiding those aspects that are marginal with
respect to the common abstract vision they offer. During the
last decades, SAs proved their overall benefits in the software
development lifecycle (e.g. stakeholders can rely on them
in order to evaluate alternative solutions, or the impact of
evolution in the system).

Model-Driven Engineering (MDE) [6] has emerged as
a powerful support for the definition and development of
software solutions leveraging the representation of higher-
level and semantically-rich abstractions and their automatic
processing [7]. In particular, MDE has also been shown
to be promising in tackling programming in heterogeneous
computing environments [8]. In fact, the explicit treatment
of models, metamodels, and automatic transformations as
first-class entities in MDE eases the definition of families
of software assets (e.g., products or services) that can be
added, extended, or combined in tool chains. Furthermore,
the development of Domain-Specific Languages (DSLs) and
their related frameworks promote the specification of ap-
plication logic at a high level of abstraction, decoupling
it from implementation details [9]. The potential benefit is
that domain experts can focus on architectural-independent
aspects of the application, delegating to some software asset
the responsibility of addressing architectural-dependent issues
(e.g. by weaving information from heterogeneous computing
experts).

However, translating some high-level and domain-specific
artifacts directly into some optimised low-level representation
is not usually a trivial task. Even assuming it is feasible, such
a specific transformation will directly embed the optimisa-
tion logic for the considered target heterogeneous computing
environment. This limitation will prevent the possibility to
define reusable assets that can be shared between different

domains and that could cover different types of heterogeneous
computing environments. Thus, the shared vision offered by
an architectural style can rely on a reference intermediate
representation intended to support the information waving
across several artefacts and assets.

In this work, we present Domain, a software platform that
supports ICT experts in taming the complexity of modern
heterogeneous computing environments for task-based appli-
cations. Specifically, Domain adopts the Actor Model [10, 11]
as the reference architectural style that leads to the definition
of the intermediate representation internal to the software
platform. Indeed, the Actor Model offers a flexible abstraction
for expressing essential concurrent behaviours. In addition,
Domain envisages the development of two families of model
transformations: one that manipulates DSL specifications into
the artifacts in the intermediate representation; another that
processes intermediate representation artifacts to generate
binary executables that can run on an associated runtime
environment that controls the target hardware resources.

In the following, we also report on a case study on the
presented software platform. Specifically, we refer to the do-
main of speculative stream processing [12] where an SQL-like
application is automatically translated into C code, optimised
for execution in a parallel runtime environment. To focus on
the DSL-implementation and the conversion capabilities the
transformation leverages the Actor Model architectural style
which bridges the semantic gap between high-level DSL (i.e.
SQL-like) and low-level, performance-optimised code (i.e.,
in C). The case study includes a first empirical study that
compares the performance improvements of the optimised
code obtained by Domain with Apache Spark. In general,
the outcomes of the case study suggest enhanced adaptabil-
ity of the proposed solution and reduced execution time in
heterogeneous computing environments.

The rest of the paper is organised as follows. Section II
discusses the relevant assets that are reusable in a heteroge-
neous computing environment, illustrating what stakeholders
can benefit from them. In Section III we illustrate the model
we use to glue together the components of the proposed
software platform. Our case study is presented in Section IV,
where we highlight the reusability of the Domain’s assets and
the performance of the generated artifacts.

II. REUSABLE ASSETS IN HETEROGENEOUS COMPUTING

This section introduces Domain, the software platform that
we have conceived to support the definition and governance
of reusable software assets for applications targeting to be
efficiently executed on modern heterogeneous architectures.
The section is organised as follows: Section II-A reports on
the main stakeholders potentially impacted by Domain and
their roles; while Section II-B describes the main architectural
pillar of the software platform that Domain offers.

A. Stakeholders and Roles

The main Domain’s stakeholders are specialists involved
for some reason in the definition of concurrent software

application that can efficiently exploit the potentials offered
by heterogeneous computing environments. In this sense,
Domain has been structured using the separation-of-concerns
principle. Specifically, we identified a set of several perspec-
tives, each one addressing a specific aspect related either to
the development of a software application, its optimisation,
or its actual execution on a target runtime environment (see
Fig. 1). These perspectives aim to support stakeholders playing
the logical roles reported below.

Application Engineers (App-Es) are intended as ICT experts
that focus on the development of a specific software applica-
tion. We assume that they have all the knowledge related to
the considered domain in order to guide the development of
the target application. However, in the general case they ignore
the underlying details of the hardware platforms hosting the
execution of their application. Thus, among their requirements,
there is the possibility to express the application logic only
by means of domain-specific concepts. App-Es use those
Domain assets that allow them to specify the application logic
leveraging specific DSLs.

HPC Engineers (HPC-Es) are ICT experts in modern het-
erogeneous architectures; they are able to orchestrate the
underlying hardware resources to safely compute a set of
concurrent tasks on the available hardware resources and
according to a given execution plan. In order to support
these activities, HPC-Es are also requested to be aware of the
operating systems (OS) details. Usually HPC-Es are agnostic
with respect to the applications they are supporting. In this
sense, also the Domain’s assets they refer to do not take into
account application-specific concepts. Also in this perspective,
Domain promotes the definition of assets leveraging DSLs
closely related with concepts and scenarios from the HPC
domain, so that support HPC-Es in their activities.

Optimisation Specialists (Opt-Ss) are stakeholders that are
able to design efficient planning strategies. They may have
expertise in HPC or in the domain of the considered applica-
tion; but they are not required to have such knowledge. Indeed,
given a set of constraints from both HPC-Es and App-Es, their
main responsibility concerns the definition of optimal policies
to be followed while executing the software application of the
underlying hardware infrastructure. Example of assets used by
Opt-Ss are optimisation engines, decision making modules, or
activity planner.

SA Experts (SA-Es) are either software architect experts
in the Actor Model, or MDE experts of the technological
solutions in the software platform. They contribute to the
evolution of the software assets offered by Domain. Their
main responsibility is to collaborate with the other roles in
order to guide the definition/refinement Domain’s assets (e.g.
application-specific modeller, backend compiling toolchains,
OS-library manager, decision making modules). Also they
contribute to definition and maintenance of the Domain’s core
assets, that are those modules supporting the adherence to the
Actor Model architectural style.

Fig. 1: Overall organisation of the Domain platform.

B. Software Platform

Domain is a comprehensive software platform that allows
App-Es, HPC-Es, Opt-Ss, and SA-Es to jointly tame the
complexity of delivering efficient concurrent/distributed appli-
cations on top of modern exascale-era heterogeneous archi-
tectures. Domain’s architecture can be divided into various
interconnected logical components, each of which explicitly
targets one specific class of stakeholders but at the same time
allows all of them to interact with the other parties in a
proficient manner according to their specificity (see Fig. 1).
These components are the language development front-end
(FE), the runtime environment (RE), and the optimiser (OPT).
It is compatible with mewssage-passing standards such as
MPI, thus being intrinsically tailored for distributed setups.

The language development FE is based on MDE principles
to enable proper software reusability of optimised components
belonging to the runtime environment and to simplify the
development of new DSLs. Internally the software platform
adopts an architectural style based on the Actor Model [11].
Such architectural style supported the definition of an inter-
mediate representation (IR) that is considered the target of the
various DSLs that can be plugged into Domain. Concurrent
applications are modelled in terms of actors that exchange
tasks by means of message passing. Each actor is responsive
to the receipt of a new task and, while processing it, it can
generate new tasks destined to any actor in the system (even
itself). The IR conveniently allows one to model the (dynamic)
interaction topology between the actors, and allows to specify
the logic behind the processing of a received task. Also, it
allows us to specify the policy according to which tasks are

delivered to the actors.
The introduction of a new DSL to allow App-Es imple-

ment applications to run on top of heterogeneous architec-
tures requires SA-Es to construct a Model-to-Model (M2M)
transformation from some application-oriented model to the
Domain IR. This step is sufficient to benefit from the Domain
FE to build a final executable that can be executed on the
heterogeneous infrastructure. Conversely, in the absence of the
intermediate representation, the development phase of a new
DSL would require not only the realisation of the language
itself, but also the implementation of the Model-to-Text (M2T)
transformation to the low-level code. Considering the hetero-
geneous nature of the hardware infrastructure we tackle, this
could require implementing multiple M2T transformations,
one for each target hardware platform.

On the other hand, the Domain FE implements such M2T
transformations starting from the IR. In this way, the same
transformations can be reused for multiple DSLs, reducing the
time required to build a functional DSL ecosystem. Moreover,
any optimization that HPC-Es and Opt-Ss deliver to the
Domain platform becomes immediately available to all DSLs
plugged into Domain.

The benefit of adopting an IR also lies in the fact that it
becomes the “lingua franca” that all other components of the
system use to enable stakeholders to achieve their goals in a
coherent and proficient way.

For example, let us focus on another core component of
Domain: the RE. This environment takes care of the execution
of the applications developed using the Domain FE. The RE
considers the actor as the abstract execution component to
execute on the hardware managed during the execution of the
application. At the same time, the task is the atomic unit
of computation that allows the activation of some specific
actor. In general, the important role of the RE is to correctly
orchestrate the execution of the overall application on the
differentiated (distributed) hardware instances on which the
application is deployed.

To meet this objective, the RE relies on inter-device task
queues (implemented as custom k-heaps) to exchange tasks
generated by the actors even when they are (currently) running
on different hardware devices. These queues can be conve-
niently designed by HPC-Es to capture the specific capabilities
of the underlying hardware, capturing the characteristics of the
applications thanks to its specification in the IR.

The RE must also interact with the OPT component to
determine an optimal strategy to achieve some non-functional
goal, such as maximising application performance, improving
energy efficiency, or achieving a certain level of performance
under a power cap [13]. The OPT is an abstract component in
Domain, it can be realised by Opt-Ss using different modelling
and development strategies, also considering that it can arbi-
trarily change during the lifetime of the application. Currently
we are developing a reference OPT implementation based on
Answer Set Programming [14] rules to specify the logical
constraints that the allocation must satisfy; nevertheless, any
other external framework can be potentially adopted. The

detailed presentation of OPT or its reference implementation
is out of the scope of this work.

Part of the input used by Opt-Ss are the optimization pa-
rameters, that encompass the set of actors that the application
will require for its execution and the interconnections between
the actors. This information is obtained directly from the IR
and allows Opt-Ss to implement the differentiated optimisation
strategies mentioned above.

The output of the OPT module, consisting of the placement
of actors on the different devices composing the heterogeneous
system, is received by the RE, which, through an orches-
tration and actor migration module, will move parts of the
application workload between devices in order to achieve the
set optimisation goals. In this way, HPC-Es can benefit from
the knowledge of Opt-Ss, while still ensuring optimal policy
implementation thanks to their knowledge of the architectural
details.

In order for the OPT module to obtain a proper solution
to the actor placement problem, it is necessary to have fresh
information on the execution profile of the application. This in-
formation can be only obtained observing how the application
behaves, e.g., it’s memory allocation patterns, the execution
time of different classes of tasks on specific hardware devices,
or the time needed to transfer one task from one actor to
another, irregardless of where they are currently running. This
fine-grained information can be obtained by injecting some
monitoring probes into the application code. Given that we rely
on M2T transformations to generate the final application code,
the Domain FE is a suitable place to support the injection of
such monitoring probes. Again, the FE becomes the logical
block of Domain where SA-Es and Opt-Ss can interact.

III. THE INTERMEDIATE REPRESENTATION

As mentioned in the previous sections, Domain leverages
an IR as the reference conceptual model shared between the
pluggable assets of the rest of the software platform. This IR
is based on the internal architectural style referred by Domain
(i.e. Actor Model [11]). In the following, we first recall the
fundamentals of the Actor Model, then present the reference
implementation of IR in Domain.

A. The Actor Model

The Actor Model is a formalisation of concurrent com-
putation developed since the 1970s [10]; its core concept is
named “actor”. Actors are autonomous, self-contained entities
that perform operations in parallel and communicate with
each other exclusively by exchanging asynchronous messages.
In particular, each actor is equipped with a mailing ad-
dress [11][15], which other actors use to send messages to
the actor. Interaction between actors allows synchronisation
and coordination of processes without the need for a shared
state.

The formalisation does not use any singular global clock;
the information contained within each actor is confined to the
agent itself, becoming known to other actors solely through the
act of communication. Consequently, each actor possesses its

own local clock upon which the agent’s local states (i.e., events
occurring within the agent) are ordered. Local orders, which
pertain to different agents, are connected by the activation
order, which represents the causal relationship between events
occurring in different agents. Thus, the global ordering of
events is a partial ordering in which the ordering of events
relating to different agents is defined only if there are causal
relationships linking them. Therefore, a distributed system
constructed in accordance with this theoretical framework is
inherently asynchronous. This is fundamental considering that
our target execution environment is composed of (distributed)
heterogeneous architectures.

The communication mechanism is based on buffered asyn-
chronous communications: since buffers are available to store
received messages, the sender does not have to wait for the
receiver to receive the communication in order to continue its
activities. This also allows actors to communicate with itself.
The order of arrival of communications sent towards an actor
is a linear order.

Each actor, at a given time, has the possibility of communi-
cating with a certain group of other actors: the set of possible
communications defines a topology, either static or dynamic.
Topology reconfiguration is achieved through the exchange
of addresses: each actor can reconfigure part of the topology
simply by communicating its address to other actors.

Each message exchanged among actors piggybacks a
task. The task concept is expressed by means of the tu-
ple ⟨envelope, payload⟩, where envelope is the couple
⟨tag, target⟩ that describes the class of communication (tag)
and the destination actor (target). The member payload is
any application-dependent data. The target must be a valid
address. Consequently, an actor A1, to send a task to a target
actor A2, must know its address. In particular, A1 may know
the address of A2 if it has received this information from a
particular communication, or if A2 was created by A1, as an
effect of processing some task.

A further concept that characterises the actor is its be-
haviour. When an actor receives a task, it fetches it to processes
it. The actions the actor takes in processing the task define its
behaviour. While processing a task, an actor may create new
actors or new tasks: in the latter case, the actor sends a new
task to some actor, which will process the task according to
its specific behaviour.

After processing a task, an actor can specify a replacement
behaviour (i.e. the “become” operation), which corresponds
to the sequence of actions that will be performed at the
processing of the next task.

B. Reference Implementation

The IR described above has been implemented as the Ac-
torLanguage using JetBrains MPS as the reference Language
Workbench [16]. An instance of a program implemented in
ActorLanguage is an ActorScript. We informally introduce the
language referring to the ActorScript shown in Listing 1.

The language defines a high-level system for creating and
managing actors in line with the Actor Model, emphasising

1 ActorScript :
2

3 Types:
4 declare type type1
5

6 External Functions:
7 include func1;
8 include func2;
9

10 Behaviors:
11 create_behavior(b1, receivedMessage) {
12 result = execute(func1, receivedMessage, type1);
13 List<ActorReference> actorReferences = get_actors(

Policy.TOPOLOGY);
14 send_message_to_group(actorReferences, result, 5.0);
15 }
16 create_behavior(b2, receivedMessage) {
17 become(b1);
18 }
19

20 Actors:
21 create_actor(actor1, b1, FIFO);
22 create_actor(actor2, b2, FIFO);
23

24 Topology:
25 actors graph {
26 actors:
27 actor box actor: actor1
28 actor box actor: actor2
29 links:
30 actor link actor from: actor1 to: actor2 {
31 data:
32 text
33 }
34 }

Listing 1: Example of ActorLanguage Usage

asynchronous, message-based communication. Actors interact
and perform activities as reported in Section III-A; further-
more, while performing a task, an actor can invoke external
functions (i.e. opaque behaviours), as shown at line 12.

Actors specify replacement behaviours via a become op-
eration (see line 17), which allows to specify a different
behaviour for the actor from that moment on. They interact
within a defined topology (lines 24–34), represented as a graph
of ActorBoxes (nodes) and ActorLinks (arcs). Actors lack a
global view of this topology and rely on a special receptionist
actor to retrieve information about their neighbours through a
"get_actors" action (line 13).

An ActorScript is structured into five parts (Types, External
Functions, Behaviors, Actors, and Topology).

The first part of an ActorScript concerns the declaration of
the types, which allows characterising the payload of the tasks
exchanged by actors.

In the second part, an ActorScript provides the definition
of external functions, which are declared by name without
specifying any further characteristics. In this way, SA-Es and
App-Es can provide support for the execution of domain-
specific library functions.

The third part of an ActorScript is dedicated to the definition
of the actor’s behaviours as sequences of ActorActions. An
ActorAction models any of the actions the actor can take while
processing a task (see Section III-A) including the invocation
of opaque functions.

In the fourth part, an ActorScript contains actor definitions
using the create_actor primitive (lines 21–22), which creates
a single actor with a certain name, behaviour, and FetchPolicy

(i.e., the way the actor fetches the messages from its queue).
The last part of an ActorScript allows one to define a

topology. This section is the only one to be characterised by
a dual concrete syntax: one textual and one graphical. Both
syntaxes allow the combination of several ActorBoxes (one per
actor) modelling the nodes of the topology, and their relative
ActorLinks, which instead model the arcs. ActorLinks can also
have associated data in the form of a string.

C. Model-to-Text Assets

Domain foresees a collection of M2T generators that trans-
form models in the IR to lower level artefacts targeting either
some implementation for a specific hardware platform, or the
format expected by other assets like, for example, the OPT
component.

Specifically, we started designing a set of M2T assets target-
ing a parallel/speculative task-based runtime environment [17].
In this RE, the application is partitioned into state-disjont
jobs that execute tasks using an event-driven programming
approach. At the time of this writing, we only provide the
M2T asset for CPU code; however, we are currently working
in order to provide also M2T assets for both GPU and FPGA
architectures.

In all cases, the M2T transformation is based on the cor-
respondence between the concept of actor in ActorLanguage
and that of a job in the selected RE. The mapping takes place
via an address, i.e. an integer value assigned to each actor,
which represents the ID of the corresponding job. Thus, the
core concepts of ActorLanguage are first transformed into
programs that leverage hardware-specific libraries and then
compiled into executable binaries that can be run on the
specific architectures.

The key aspect of M2T assets is that they are all application-
independent. Both HPC-Es and SA-Es collaborate on their
definitions, while App-Es only use them once their application
(specified ignoring hardware-related aspects) has been con-
verted into the IR by means of other (M2M) assets.

D. Model-to-Model Assets

Unlike the M2T assets presented in Section III-C, M2M
assets have the responsibility to transform artefacts expressed
in some DSL into IR. In the general case, each M2M asset
maps the concepts of the considered DSLs onto an actor
topology expressed in the ActorLanguage. The dynamic inter-
actions among the different concepts in the DSL are mapped
to a pool of messages that are exchanged among actors;
also the implementation of the specific semantic associated
with each interaction between two concepts is delegated to
the actors’ opaque behaviours (i.e., invocation of external
functions defined once for all for each DSL).

M2M assets are independent of target hardware archi-
tectures; they focus only on application-dependent concepts
and on the IR. Both App-Es and SA-Es collaborate in their
definitions. In addition, they collaborate on the definition of the
DSLs and possibly on the definition of FE facilities supporting
the domain-specific modelling of the applications.

IV. CASE STUDY

In this Section, we report the results related to the imple-
mentation of a Stream Processing DSL based on Domain.
Specifically the case study focuses on the definition of the
DSL and its mapping into the IR. The resulting artefacts have
been transformed in low-level C code for execution on CPUs
by using the M2T assets described in Section III-C. In this way
we show how it is possible to define a high-level DSL and how
a model instance is refined up to a concrete implementation.
We also show the execution performance of the generated
application, named ActorStream, compared to a state-of-the-art
stream processing framework, namely Apache Spark.

A. The QueryLanguage DSL

QueryLanguage is a DSL inspired by Streaming SQL [18],
of which it is in fact a subset. It allows specifying general-
purpose queries and defining data streams from which tuples
are received and processed. In this context, we assume that
App-Es are experts of query languages such as SQL, but
they complexity ignore concepts and strategies typical of
heterogeneous computing environments.

The key concept in QueryLanguage is the Statement, which
provides an interface for all language constructs. The main
constructs are Create View, which allows the definition of
a new named data stream source, and Select, which allows
querying an existing stream, possibly according to some
conditions. All statements refer to a set of columns and streams
from which tuples are received. Select can refer to more than
one stream, in the case of Join operations.

When processing tuples, the ones of interest can be specified
using a Where clause, which allows a condition to be specified.
Conditions can be simple or multiple: in the former case, the
condition references an attribute of interest using a comparison
operator and a value that must be compared with the value
associated with the column; in the latter case, a multiple
condition corresponds to a binary tree, where each node may
be a leaf, thus a simple condition, or have two child nodes,
which may be leaves of the tree, or roots of a further subtree.

Select can also use additional operators. GroupBy allows the
results of the selection operation to be grouped according to
the value of a particular attribute. OrderBy allows sorting the
results of the selection operation according to the value of a
particular column. Window is used to define the time windows
of the data on which, typically, to perform aggregations,
based on the value of an attribute of type DATETIME. Also,
aggregate operators may be used, such as Min, Max, Average,
Sum, or Count.

B. From the DSL to the IR

To plug QueryLanguage into Domain, it is simply necessary
to construct an M2M transformation targeting the ActorLan-
guage and provide possible external libraries. To support
the transformation, we extract a topology from the set of
queries and delegate domain-specific actions (SQL operations)
to external libraries implemented by SA-Es, exploiting the

concept of “execution of external functions” offered by Ac-
torLanguage.

Therefore, the goal of the behaviours use execute to exe-
cute the external function implementing SQL operations, the
invocation of get_actors to get the neighbouring actors, and
the sending of the result of the function to the neighbours.

Regarding the topology, we first generate a special data-
Source actor. It does not receive any message from other actors
but allows injecting into the application the tuples coming
from external streams. To generate the other actors, we have
to analyse the query set during the M2M transformation to
extract which actors are required as follows:

• If the query includes the Where clause and refers to only
one stream, a selection actor is generated;

• If the query includes the Where clause and refers to two
streams (join):
– If the condition c can be decomposed into two single-

stream sub-conditions c1 and c2 such that c = c1 ∧ c2,
then two selection actors are generated;

– If the condition c can be decomposed into two single-
stream sub-conditions c1 and c2 such that c = c1 ∨ c2,
then only one selection actor, relative to c, is generated;

– If the condition c is already single-stream, only one
selection actor, relative to c, is generated.

• If the query selects a proper subset of the stream at-
tributes, a projection actor is generated;

• If the query includes the GroupBy clause, a grouping
actor is generated;

• If the query includes the OrderBy clause, a sorting actor
is generated;

• If the query refers to more than one stream, a join actor
is generated;

• If at least one column has an associated aggregation
function, then an actor corresponding to the specific
aggregation function is generated;

• If the query has a Window clause, then a window actor
is generated.

We use MPS mapping labels to determine, during the
transformation, if some of the actors that are being generated
have already been generated during a previous transformation
step. This is the case, e.g., of projection operators that select a
subset of attributes from a stream’s tuple. The same projection
could be used in multiple queries. In this case, we use a single
actor that sends its result to multiple destination actors. In
this way, we reduce the number of actors and therefore the
execution complexity.

When all actors are generated, we complete the topology
specification creating static links between the actors, represent-
ing the DAG of the stream processing pipeline. We analyse all
queries again and add the corresponding links respecting SQL
precedence between operators.

C. Experimental Setup

As the streaming data source, we have used a replay of the
Taxi and Limousine Commission (TLC) Trip data records [19]

1 2 3 4 5 6 7 8
Number of Cores

0

10

20

30

40

50

60

70

80
Ex

ec
ut

io
n

Ti
m

e
(s

ec
on

ds
)

ActorStream Execution Time
Spark Execution Time

Fig. 2: Execution times varying with the number of cores

from the New York City area, which contains fields captur-
ing pick-up and drop-off dates/times, pick-up and drop-off
locations, trip distances, itemized fares, rate types, payment
types, and driver-reported passenger counts. We have used a
set of SQL queries referring to crucial locations in New York
City, such as airports and places of aggregation (e.g., Madison
Square Garden), or referring to aspects of potential interest,
such as the average distance travelled grouped by place of
departure, or the analysis of group rides and those with high
tips. The queries are reported in Listing 2.

For comparison, we have implemented the same set of
queries on the Apache Spark framework, a powerful open-
source data processing engine designed for fast and distributed
processing of large volumes of data, which provides the ability
to execute SQL queries on streaming data.

We have run our experiments on a machine equipped with
an Intel(R) Core(TM) i5-1135G7 @ 2.40GHz, having a total
of 8 vCPUs, and 16 GiB of RAM. All the results have been
averaged over 10 different runs.

D. Results

We report in Figure 2 the trend of execution time as the
number of cores varies, in both systems.

In detail, ActorStream shows better execution time than
Apache Spark when using the physical cores, while with the
introduction of Hyper-Threading ActorStream’s performance
tends to worsen, while Spark stabilises. The reasons why this
phenomenon occurs are not straightforward. In general, it is
attributable to secondary effects on the off-core dynamics, such
as the cache architecture. An in-depth analysis of both the
system and the reference platform, in order to verify the causes
behind this phenomenon, is deferred to subsequent work.

We have also studied the memory consumption when vary-
ing the number of cores. From the results in Figure 3, it can be
seen that RAM memory consumption, both average and peak,
is stable in both systems. In the specific case of the query
configuration adopted, which has an 1800-second window,
ActorStream performs better in terms of memory consumption.

Figure 4 shows the speedup over the sequential execution
as a function of the number of cores. The sequential execution
average time is 29.2 seconds. ActorStream has a speedup

CREATE VIEW AirportRides AS
SELECT *
FROM Taxis
WHERE Airport_fee != 0.0
WINDOW(TUMBLING, 30 MINUTES)

SELECT payment_type, AVG(total_amount)
FROM AirportRides
GROUP BY payment_type

SELECT PULocationID, SUM(passenger_count)
FROM Taxis
GROUP BY PULocationID
ORDER BY passenger_count
WINDOW (TUMBLING , 30 MINUTES)

CREATE VIEW MadisonSquareGardenRides AS
SELECT *
FROM Taxis
WHERE (PULocationID == 161) OR (DOLocationID == 161)
WINDOW (TUMBLING , 30 MINUTES)

SELECT PULocationID, AVG(congestion_surcharge)
FROM MadisonSquareGardenRides
GROUP BY PULocationID
ORDER BY congestion_surcharge

SELECT PULocationID, SUM(trip_distance)
FROM Taxis
GROUP BY PULocationID
ORDER BY trip_distance
WINDOW (TUMBLING , 30 MINUTES)

CREATE VIEW HighTipsRides AS
SELECT *
FROM Taxis
WHERE tip_amount > 10.0
WINDOW (TUMBLING , 30 MINUTES)

SELECT PULocationID, DOLocationID
FROM HighTipsRides

CREATE VIEW GroupRides AS
SELECT *
FROM Taxis
WHERE passenger_count > 4
WINDOW (TUMBLING , 30 MINUTES)

SELECT *
FROM Taxis
WHERE (payment_type == 1) AND (total_amount > 100.0)
WINDOW (TUMBLING , 30 MINUTES)

Listing 2: Stream Processing Queries

1 2 3 4 5 6 7 8
Number of Cores

0

200

400

600

800

1000

1200

1400

1600

M
em

or
y

Us
ag

e
(M

iB
)

ActorStream Avg Memory Usage
ActorStream Peak Memory Usage
Spark Avg Memory Usage
Spark Peak Memory Usage

Fig. 3: Average and peak memory consumption varying with
the number of cores

1 2 3 4 5 6 7 8
Number of Cores

0.4

0.6

0.8

1.0

1.2
Sp

ee
du

p
ActorStream Speedup
Spark Speedup

Fig. 4: Speedup varying with the number of cores

1 m
inu

te

30
 m

inu
tes

1 h
ou

r

2 h
ou

rs

3 h
ou

rs

6 h
ou

rs

12
 ho

urs

18
 ho

urs

24
 ho

urs

Window Size

25

30

35

40

45

50

55

Ex
ec

ut
io

n
Ti

m
e

(s
)

Execution Time (ActorStream)
Execution Time (Spark)

Fig. 5: Execution times varying with the window size

greater than 1 only in executions on physical cores, for the
same reasons as described above. On the other hand, Apache
Spark is unable to achieve competitive performance.

Another relevant aspect related to our case study is related
to the size of the time window. In Figure 5 we report the
execution time obtained by both systems when varying the
window size.

In general, ActorStream performs better than Spark, and
in both cases, times tend to be stable even when varying
the window size. The spike in Spark’s times, relative to the
one-minute window size, comes from the internal window
management provided by Spark, which causes the execution
time to assume, for windows ranging from one minute to 10
minutes, a trend like the one shown in Figure 6.

The results, shown in Figure 7, demonstrate that the Spark-
related memory usage, both average and peak, are stable
and independent of window size. This is not the case for
ActorStream, which shows an increasing trend in both memory
utilisation metrics.

In order to better understand the differences in memory
utilisation between the two systems, it is necessary to introduce
some concepts related to the way Spark handles data streams.
The Structured Streaming model offered by Spark involves
the abstraction of the data stream as an unlimited table, called
Input Table, to which a row is added for each new element
received from the stream. A query on this table, i.e. a query

2 4 6 8 10
Minutes

30

35

40

45

50

55

Ex
ec

ut
io

n
Ti

m
e

(s
)

Execution Time

Fig. 6: Spark execution times varying with window size

on the stream, results in the generation of a Result Table: the
addition of one or more rows to the Input Table triggers the
updating of one or more Result Table, according to any queries
interested in the received data.

The fundamental aspect of Structured Streaming, which
differentiates Spark from ActorStream, concerns the materi-
alisation of the entire input table: in the case of Spark, data
are processed incrementally: the reading of a new piece of
data from the stream leads to the updating of the Result
Table; in correspondence to this update, the received tuple is
immediately discarded. In the specific case of an aggregation,
the reception of new data only leads to the update of an
intermediate state, avoiding the need to keep all received
tuples within the Input Table. Window management, in Spark,
is seen as a special case of aggregation, allowing this kind of
computation to be performed incrementally.

In ActorStream, on the other hand, each data window
is processed as a block: the Data Injection module injects
data into the topology; the actors that are responsible for
defining data windows simply accumulate all the data that has
timestamps compatible with the limits of the current window.
When the window’s time limit expires, all accumulated rows
are sent in bulk to the next actors; depending on their nature,
they may perform aggregations, thus reducing the size of the
list of rows, or other operations that do not decrease the
cardinality of the list, sending the result to the next actors
in the topology.

Consequently, it is evident that the average memory con-
sumption, in the case of ActorStream, must be directly pro-
portional to the size of the window, as this determines the size
of the intermediate “state”. In contrast, Spark’s “intermediate
state” does not depend on the size of any windows associated
with queries.

Overall, ActorStream demonstrates lower execution time
and better speedup compared to Apache Spark when running
on physical cores. Both approaches maintain stable mem-
ory usage with smaller scheduling periods (up to 30-minute
window sizes), although ActorStream exhibits slightly better
memory consumption. However, as window sizes increase,
Apache Spark’s superior memory management policies en-

1 m
inu

te

30
 m

inu
tes

1 h
ou

r

2 h
ou

rs

3 h
ou

rs

6 h
ou

rs

12
 ho

urs

18
 ho

urs

24
 ho

urs

Window Size

0

1000

2000

3000

4000

5000

6000

7000
M

em
or

y
Co

ns
um

pt
io

n
(M

iB
)

Avg Memory Usage (ActorStream)
Peak Memory Usage (ActorStream)
Avg Memory Usage (Spark)
Peak Memory Usage (Spark)

Fig. 7: Average and peak memory consumption varying with
the window size

sure stability, while ActorStream shows an increasing trend
in memory consumption. In conclusion, using Domain we
have successfully developed a system capable of executing
Streaming SQL programs effectively, though there is still room
for optimizing the performance of the generated artefacts.

V. RELATED WORK

Over time, various frameworks have been proposed in order
to support the development of applications targeting heteroge-
neous architectures. Among the most significant examples are
OpenCL [20], SyCL [21] and Kokkos [22]. These frameworks
offer the possibility of programming heterogeneous archi-
tectures by abstracting some aspects of the actual hardware
resources. However, they are general purpose programming
frameworks, thus they do not yet offer domain-specific con-
cepts that App-Es can rely on in the formulation of the
software application. In addition, they focus only on one of
the aspects promoted by Domain: application development.
Indeed, they do not provide any explicit support to the execu-
tion of software bundles and their (optimal) scheduling on the
various hardware components. In contrast, the key aspect in
Domain is the formalisation of reference IR that is grounded
on shared architectural style. In this way it enables to address
the development of software applications for heterogeneous
computing environments from several technological perspec-
tives, and it also also fosters the development of a families of
reusable assets manipulating artifacts in/to the IR.

Another cluster of related work concerns the adoption and
development of DSLs in software engineering. The literature
includes many examples that leverage DSLs from a wide range
of domains: from partial derivative equations [23], to real-time
scheduling [24], IoT [25], business process design [26], or
energy management [25]. However, there are also studies that
specifically target heterogeneous architectures and highlight
how the use of DSL facilitates the interaction with these types
of platforms [27, 28]. Finally, the systematic mapping study
in [29] offers a detailed overview of the frameworks enabling
the development of DSLs.

VI. CONCLUSIONS

The rise of heterogeneous computing architectures has
significantly advanced the capabilities of high-performance
concurrent applications. However, the design of software ap-
plications running on these architectures is still challenging: it
requires application experts to delve into various hardware-
specific aspects and reducing the effort they can actually
spend on domain-specific issues. In this work, we presented
a software platform called Domain. Its core idea is to
provide a comprehensive socio-technical environment where
ICT experts (i.e., Application Engineers, HPC Engineers,
Optimisation Specialists, software architects, and eventually
experts of the Domain platform) can collaborate towards the
development and the adoption of reusable assets supporting
the development of software applications for heterogeneous
computing environments. Domain encourages the adoption
of several domain-specific notations closely related either to
the development of a software application, its optimisation,
or its actual execution on a target runtime environment. Also,
the software platform internally refers an architectural style
based on the Actor Model [11] which defines the reference
conceptual model shared between its pluggable assets. In
this way Domain decouples the specification of application-
specific aspects from the automatic processing of the modelled
artifacts, which include the generation of hardware-specific
binaries and the optimised execution of such binaries on the
target heterogeneous computing environment.

In this work, we reported about the application of some
assets in Domain to a first case study on speculative stream
processing based on the TLC Trip data records from the New
York City area. Specifically, we report on how to combine
several assets in the software platform in order to automatically
convert an application written in an SQL-like syntax into C
code optimised for execution in a parallel runtime environ-
ment.

In future work, we will evaluate the entire platform, consid-
ering also M2T transformations enabling execution on hard-
ware other than CPUs. This will pave the way for experiments
with different adaptive policies to orchestrate execution on
multiple classes of hardware to improve performance and/or
energy efficiency. In order to do so, we will also stress test the
generated artefacts with configurations that exhibit extremely
dynamic workload profiles at runtime.

ACKNOWLEDGMENT

This paper has been partially supported by the Ital-
ian MUR PRIN 2022 Project: Domain (Grant Agreement
#2022TSYYKJ) financed by NextGenEu, and partially by
the Spoke 1 “FutureHPC & BigData” of the Italian Re-
search Center on High Performance Computing, Big Data
and Quantum Computing (ICSC) funded by MUR Missione
4 Componente 2 Investimento 1.4: Potenziamento strutture di
ricerca e creazione di “campioni nazionali” di R&S (M4C2-
19) - Next Generation EU (NGEU).

Guglielmo De Angelis is with the Italian Research Group:
INdAM-GNCS.

REFERENCES

[1] D. Kothe, S. Lee, and I. Qualters, “Exascale computing in
the united states,” Computing in science & engineering,
vol. 21, no. 1, pp. 17–29, Jan. 2019.

[2] F. Gagliardi, M. Moreto, M. Olivieri, and M. Valero,
“The international race towards exascale in europe,” CCF
Trans. on High Perf. Comp., vol. 1, no. 1, pp. 3–13, May
2019.

[3] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio,
J.-C. Andre, D. Barkai, J.-Y. Berthou, T. Boku, B. Braun-
schweig et al., “The international exascale software
project roadmap,” The Int. Jour. of High Performance
Computing Applications, vol. 25, no. 1, pp. 3–60, 2011.

[4] M. Shaw and D. Garlan, Software architecture: perspec-
tives on an emerging discipline. Prentice-Hall, 1996.

[5] Z. Wan, Y. Zhang, X. Xia, Y. Jiang, and D. Lo, “Software
architecture in practice: Challenges and opportunities,” in
Proc. of the 31st ACM ESEC/FSE, ser. ESEC/FSE 2023.
New York, NY, USA: ACM, 2023, p. 1457–1469.

[6] J. Bézivin, Model Driven Engineering: An Emerging
Technical Space. Springer, 2006, pp. 36–64.

[7] A. Rodrigues da Silva, “Model-driven engineering: A
survey supported by the unified conceptual model,” Com-
put. Lang. Syst. Struct., vol. 43, pp. 139–155, Oct. 2015.

[8] R. Marotta and A. Pellegrini, “Model-driven engineering
for high-performance parallel discrete event simulations
on heterogeneous architectures,” in Proc. of the 2024
Winter Simulation Conference, ser. WSC’24, H. Lam,
E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and
M. D. Rossetti, Eds. USA: IEEE, Dec. 2024.

[9] J. Sanchez Cuadrado and J. G. Molina, “A model-
based approach to families of embedded domain-specific
languages,” IEEE Trans. on Softw. Eng., vol. 35, no. 6,
pp. 825–840, Nov. 2009.

[10] C. Hewitt, P. Bishop, and R. Steiger, “A universal
modular ACTOR formalism for artificial intelligence,”
International Joint Conference on Artificial Intelligence,
pp. 235–245, Aug. 1973.

[11] G. Agha, “An overview of actor languages,” ACM Sig-
plan Notices, vol. 21, no. 10, pp. 58–67, 1986.

[12] R. Stephens, “A survey of stream processing,” Acta
informatica, vol. 34, no. 7, pp. 491–541, Jul. 1997.

[13] S. Conoci, P. Di Sanzo, A. Pellegrini, B. Ciciani, and
F. Quaglia, “On power capping and performance opti-
mization of multithreaded applications,” 2021.

[14] G. Brewka, T. Eiter, and M. Truszczyński, “Answer
set programming at a glance,” Commun. ACM, vol. 54,
no. 12, p. 92–103, Dec. 2011.

[15] M. Ali, F. De Angelis, D. Fanì, A. Bertolino, G. De
Angelis, and A. Polini, “An extensible framework for
online testing of choreographed services,” Computer,
vol. 47, no. 2, pp. 23–29, 2014.

[16] V. Pech, “JetBrains MPS: Why modern language work-
benches matter,” in Domain-Specific Languages in Prac-
tice. Cham: Springer, 2021, pp. 1–22.

[17] A. Pellegrini, R. Vitali, and F. Quaglia, “The ROme
OpTimistic simulator: Core internals and programming
model,” in Proc. of the 4th Int. Conf. on Simulation Tools
and Techniques, ser. SIMUTOOLS. Brussels, Belgium:
ICST, Apr. 2012, pp. 96–98.

[18] N. Jain, S. Mishra, A. Srinivasan, J. Gehrke, J. Widom,
H. Balakrishnan, U. Çetintemel, M. Cherniack, R. Tib-
betts, and S. Zdonik, “Towards a streaming SQL stan-
dard,” Proc. of the VLDB Endow., vol. 1, no. 2, pp. 1379–
1390, Aug. 2008.

[19] NYC Taxi and Limousine Commission, “TLC trip
record data,” https://www.nyc.gov/site/tlc/about/
tlc-trip-record-data.page, 2009, access: 2024-11-20.

[20] A. Munshi, “The opencl specification,” in 2009 IEEE Hot
Chips 21 Symposium (HCS). IEEE, 2009, pp. 1–314.

[21] T. K. G. Inc, “Sycl™ 2020 specification (revision 9),”
2020, accessed: 2024-10-17.

[22] H. C. Edwards and C. R. Trott, “Kokkos: Enabling
performance portability across manycore architectures,”
in 2013 Extreme Scaling Workshop (xsw 2013). IEEE,
2013, pp. 18–24.

[23] M. Louboutin, M. Lange, F. Luporini, N. Kukreja, P. A.
Witte, F. J. Herrmann, P. Velesko, and G. J. Gorman,
“Devito (v3. 1.0): an embedded domain-specific language
for finite differences and geophysical exploration,” Geo-
scientific Model Development, vol. 12, no. 3, pp. 1165–
1187, 2019.

[24] C. Bartolini, A. Bertolino, G. De Angelis, and G. Lipari,
“A UML profile and a methodology for real-time systems
design,” in Proc. of 32nd EUROMICRO Conference on
Software Engineering and Advanced Applications. IEEE
Computer Society, 2006, pp. 108–117.

[25] C. Buschhaus, A. Gerasimov, J. C. Kirchhof, J. Michael,
L. Netz, B. Rumpe, and S. Stüber, “Lessons learned from
applying model-driven engineering in 5 domains: The
success story of the montigem generator framework,” Sci.
Comput. Program., vol. 232, p. 103033, 2024.

[26] C. Bartolini, A. Bertolino, G. De Angelis, A. Ciancone,
and R. Mirandola, “Apprehensive qos monitoring of
service choreographies,” in Proc. of the 28th SAC, S. Y.
Shin and J. C. Maldonado, Eds. ACM, 2013, pp. 1893–
1899.

[27] H. Choi, W. Choi, T. M. Quan, D. G. Hildebrand,
H. Pfister, and W.-K. Jeong, “Vivaldi: A domain-specific
language for volume processing and visualization on
distributed heterogeneous systems,” IEEE Trans. Vis.
Comput. Graph., vol. 20, no. 12, pp. 2407–2416, 2014.

[28] J. Xiao, P. Andelfinger, W. Cai, P. Richmond, A. Knoll,
and D. Eckhoff, “Openablext: An automatic code genera-
tion framework for agent-based simulations on cpu-gpu-
fpga heterogeneous platforms,” Concurr. Comput. Pract.
Exp., vol. 32, no. 21, p. e5807, 2020.

[29] A. Iung, J. Carbonell, L. Marchezan, E. Rodrigues,
M. Bernardino, F. P. Basso, and B. Medeiros, “Systematic
mapping study on domain-specific language development
tools,” Empir. Softw. Eng., vol. 25, pp. 4205–4249, 2020.

https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

	Introduction
	Reusable Assets in Heterogeneous Computing
	Stakeholders and Roles
	Software Platform

	The Intermediate Representation
	The Actor Model
	Reference Implementation
	Model-to-Text Assets
	Model-to-Model Assets

	Case Study
	The QueryLanguage DSL
	From the DSL to the IR
	Experimental Setup
	Results

	Related Work
	Conclusions

