
HUILLY: A Non-Blocking Ingestion Buffer for
Timestepped Simulation Analytics

Xiaorui Du
Technical University of Munich

xiaorui.du@huawei.com
Munich, Germany

Andrea Piccione
Huawei Munich Research Center

andrea.piccione@huawei.com
Munich, Germany

Adriano Pimpini
Sapienza, University of Rome

pimpini@diag.uniroma1.it
Rome, Italy

Stefano Bortoli
Huawei Munich Research Center

stefano.bortoli@huawei.com
Munich, Germany

Alois Knoll
Technical University of Munich

knoll@mytum.de
Munich, Germany

Alessandro Pellegrini
University of Rome Tor Vergata

a.pellegrini@ing.uniroma2.it
Rome, Italy

Abstract—We present HUILLY, a non-blocking data ingestion
buffer designed for parallel applications built relying on time-
stepped, fork-join computational paradigm. It provides com-
plete data separation, reducing the intricacies of multi-threaded
data structures and provides high operational efficiency. The
effectiveness of HUILLY as a non-blocking ingestion buffer
is demonstrated through an extensive experimental evaluation,
providing significant improvements in throughput and latency
for time-stepped, fork-join applications.

Index Terms—Ingestion Buffer, Stream Processing, Non-
Blocking, Time-Stepped, Simulation, Data Analytics.

I. INTRODUCTION

Efficiently processing high volumes of data in real-time is
crucial for various applications, from IoT control systems to
large-scale simulations. Many sophisticated systems have been
developed for this purpose (see, e.g., [1], [2]), implementing
stream processing concepts [3]. Data ingestion is the first step
in a data stream pipeline, ensuring efficient data transfer to the
Stream Processing Engine for processing.

Parallel applications can produce large amounts of data,
making data ingestion complex. Traditional data structures can
become bottlenecks, so optimising them for high concurrency
is essential for efficient data ingestion. Non-blocking data
structures are seen as a way to overcome the limitations of
lock-based designs, although this often comes with a higher
level of complexity or a more limited range of applications.
However, there are many situations in which traditional (non-
blocking) concurrent data structures, such as [4]–[6], are too
complicated, and simpler designs can be more effective in
stream-based processing systems.

This work introduces HUILLY, a novel non-blocking inges-
tion buffer for time-stepped, fork-join applications. Such ap-
plications are commonly used in fields like meteorology, aero-
dynamics, and medicine, where real-time processing can aid in
early warning systems [7], error-tolerant mechanisms [8], and
personalized medicine [9]. HUILLY is designed with complete
data separation in mind, a feature that significantly reduces the
intricacies often inherent in concurrent data structures, and
thereby fosters a high degree of operational efficiency. This
distinctive focus on data separation is not an arbitrary design
choice but a calculated strategy derived from the specific
requirements and constraints of time-stepped applications. The
effectiveness of our technique is demonstrated when compared

to existing state-of-the-art libraries and tools offering support
for non-blocking data ingestion. A thorough performance
evaluation shows that our data structure significantly improves
throughput and latency for the intended type of applications
based on time-stepped, fork-join models.

Hence, the purpose of this paper is twofold. First, we present
a non-blocking ingestion buffer optimised for time-stepped,
multi-threaded applications, thus filling a major gap in existing
data structures for this domain. Second, we emphasise the
importance of designing data structures tailored to the specific
needs of a given computational context, which to the best of
our knowledge are overlooked by state-of-the-art libraries. We
urge the research community to consider the advantages of
creating data structures specifically designed for a particular
domain. By marrying domain-specific constraints with ad-hoc
architectural design, we have created a simple, effective, and
highly efficient non-blocking ingestion library. In this sense,
our results encourage discussing the importance of targeted
optimisation in concurrent data structures.

The remainder of this paper is organised as follows. In
Section II we discuss previous work. Section III dissects the
anatomy of our non-blocking ingestion system. In Section IV,
we evaluate our findings and discuss their implications for
concurrent data structure design and optimization.

II. RELATED WORK

To support concurrent data ingestion, various systems (see,
e.g., Apache Kafka [10], Amazon Kinesis [11], MapR Streams
[12], and Azure Event Hubs [13]) utilise static partitioning
with a fixed number of partitions, often over-partitioned for
scalability. DistributedLog [14] offers a strictly-ordered log
service with a two-layer architecture for scaling reads and
writes independently. Apache Pulsar [15] and Pravega [16]
build upon this model, with Pulsar integrating a unified queue
and topic model and Pravega supporting auto-scaling parti-
tions. However, these systems lack data locality optimisations,
a gap addressed by KerA [17], which proposes a dynamic
partitioning and lightweight indexing framework for enhanced
scalability, throughput, and latency in Big Data applications.
Unlike Kafka [10], which uses a fixed partitioning model with
operating system cache for data delivery, KerA’s approach
allows for more effective data locality optimisations.
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Fig. 1: Data Production and Consumption Schemes.

Various lock-free and wait-free vector designs have been
proposed to address synchronization challenges in concurrent
systems [18], [19]. Combining trees [20] and flat combin-
ing [21] techniques have been explored to mitigate synchro-
nization overheads. Walulya’s lock-free vector [22] using a
combining technique for pushback operations has demon-
strated superior performance in high contention scenarios. Our
target scenario is much simpler and can be tackled with the
solution discussed in this paper.

Several lock-free algorithms for concurrent FIFO queues
have been proposed, with different levels of efficiency
and blocking potential (see, e.g., [23]–[25]). Some ap-
proaches transform lock-based algorithms into non-blocking
versions [26]–[28], while others offer innovative but limited
queue algorithms [29]–[32]. Advanced and efficient queue
designs have also been introduced [4], [6], along with dif-
ferent approaches to queue implementation and scalability
challenges [33]–[38]. We explicitly compare some of these
implementations in Section II, demonstrating the benefits of a
simpler approach in specific execution contexts.

Several proposals have been made for concurrent priority
queues, including fine-grain locking [39] and lock-free struc-
tures [40]–[42]. Notably, Marotta’s proposals [5], [43], [44]
improve on lock-free multi-bucket access and non-blocking
reshuffles, and offer linearizability and conflict resilience.
All these proposals are complex and may offer more robust
properties than necessary for a time-stepped, fork-join context.
Our work leverages the simplicity of this paradigm to deliver
superior performance.

III. THE INGESTION BUFFER

We deal with time-stepped workloads like simulations that
use parallel execution to reduce runtime [45]. This requires
partitioning the simulation into smaller computational tasks,
which can be distributed among processing units. Program-
ming models like OpenMP [46] support this parallelization
scheme. Our ingestion buffer allows concurrent processing of
tasks in the same phase without affecting the overall com-
putation outcome. This is a common assumption in OpenMP
#pragma directives. Therefore, we can store samples in a
local data structure like a dynamic array without allowing
concurrent buffer access. This limitation does not matter, as
fork-join workloads generally use all available threads, leaving
none for readers. Most relevant computations require complete
datasets, so partial computations during ingestion do not offer
much advantage.

Once a processing phase is completed, the ingestion buffer
can be concurrently read by any number of threads following
the same data separation design principle. Several strategies

Event % of misses caused by reading OPs
Scatter read Block read

L1-dcache-load-misses 48.36% 29.67%
LLC-load-misses 82.38% 64.57%

TABLE I: Linux perf Data for Sample Partitioning Policies.

can be devised to partition the set of samples across the
reading threads. We distributed samples across the threads in
a preliminary evaluation using a scattered policy. To clarify,
denoting the dynamic arrays populated by the n writing
threads as w0, w1, . . . , wn−1, the samples can be partitioned
across r reading threads as follows. The ith reading thread
will read samples at positions i, i+r, i+2r, . . . from w0 until
the end of the array is reached. The same process is repeated
for w1, . . . , wn−1. We found that reading performance was
affected by L1 cache misses, likely due to scattering causing
issues with the hardware prefetcher. See Table I for Linux
perf data on the cache usage.

Therefore, we adopted a different policy in which we
divide each of the w0, w1, . . . , wn−1 arrays into contiguous
chunks, as shown in Figure 1. This scheme corresponds to the
static scheduling provided by OpenMP for its loop pragma
directives. This partitioning policy provides the expected per-
formance and is used for the remainder of this work.

IV. EXPERIMENTAL ASSESSMENT

In the experimental assessment, we have used a combination
of different data structures, as reported in Table II. The
mutex_vector is used as a baseline reference. We include
both some research proposals (e.g., [4], [6]) and some practical
implementations coming from the industry (e.g., [47], [51]).
We have explicitly avoided comparing against some more
complex data structures discussed in Section II, due to their
level of algorithmic complexity, related to different semantics
and robustness properties, which we experimentally observed
do not pay off in the time-stepped fork-join application model
that we target in this paper. Our selection covers a wide
spectrum of different approaches.

A. Hardware Setup
We conducted our experiments on two CPU families: an

18-core 36-thread Intel(R) Xeon(R) CPU E5-2697 v4 @
2.30GHz, and a 32-core Huawei Kunpeng ARM64 CPU @
2.60 GHz. The operating system used is Ubuntu 20.04 LTS,
with kernel version 5.4.0. We have compiled our code with
GCC 9.4.0.

B. Parallel Ingestion Experiments
We created an experimental setup using OpenMP for multi-

threaded writing and reading. We use the term epoch to define
each time step, where data is generated by threads processing
independent parts. Similarly to [19], we load one million data
items per epoch, push them through the data structure with
concurrent write operations, followed by read operations with
the same number of threads. We measured the time taken by
each phase and conducted three types of experiments.

a) Multithread Read and Write Baseline: In this simplis-
tic experiment configuration, threads write each one an equal
portion of the total samples. We emulate the processing steps
by alternating ingestion and consumption phases.



Data Structure Description Reference
mutex_vector A simple STL vector protected by a mutex. —
tbb_vector The concurrent vector from Intel Threading Building Blocks. [47]
tbb_queue The concurrent queue from Intel Threading Building Blocks. [47]
tbb_bounded_queue The concurrent queue from Intel Threading Building Blocks, with an explicit bound on its size. [47]
boost_queue The lock-free queue from the Boost library. [48]
ms_queue Michael & Scott’s non-blocking queue. [4]
mc_queue A fast general purpose lock-free queue for C++. [49]
vyukov_queue A Multiple-producer/Multiple-consumer Lockless Bounded Queue. [38]
opt_atomic_queue A C++14 Multiple-producer/Multiple-consumer Lock-free Queue based on circular buffer and std::atomic. [50]
folly_queue Facebook’s Multiple-producer/Multiple-consumer bounded concurrent queue. [51]
raml_queue Turn Queue, a linearizable Multiple-producer/Multiple-consumer queue. [6]

TABLE II: Data Structures Used in the Experimental Evaluation.

b) Multithread Writing with Exponential Delay:
Threads experience a delay before inserting a sample
to mimic real-world workloads. The writing delay be-
tween samples follows an exponential distribution. The de-
lay is implemented as a busy waiting loop relying on
std::chrono::high_resolution_clock from the
C++ standard library. We verified that this approach can
generate delays that are accurate on the order of tens of
nanoseconds, which is good enough for the aims of this
experimental evaluation. We tested concurrent data structures
with various exponential delay distributions, ranging from 50
to 4000 nanoseconds in mean delay.

c) Multithread Writing with Imbalanced Workload: We
dropped the assumption that threads contribute equally to the
insertion of samples in an experiment. To create an imbalanced
scenario with varying amounts of threads, we introduced
a parameter called the imbalance ratio r, defined as the
difference between the number of samples assigned to the most
loaded thread and the less loaded one, divided by the number
of samples assigned to the less loaded thread. If r = 0, there is
no imbalance. We used an imbalance ratio of 0.4. We assumed
a linear spread of imbalance across threads to ensure fairness.
For instance, with three threads and an imbalance ratio of 0.6,
the threads inserted samples in proportions of 1.6, 1.3, and 1.
Given the number of threads n and the count of samples S,
we can determine the number of samples s0 assigned to the
least loaded thread:

s0 =
S

n · (1 + r/2)− 1
(1)

The i-th thread will be tasked with si samples:

si = s0 · (1 + r · i

n− 1
) (2)

A per-thread delay di balances thread completion times to
enforce the desired average sample delay time D:

di =
D · S
n · si

(3)

We selected a sample delay time D = 200 ns to ensure
comparability with the corresponding balanced configuration.

Listing 1 displays the pseudocode of the evaluation process.
The buffer is filled with random bytes to generate samples.
Writing and reading rates are computed independently by mea-
suring the time taken by two OpenMP parallel regions during
each epoch. The overall end-to-end cost is determined by
summing the durations of both writing and reading operations.

Our experimental results are averaged over 10 runs.

Listing 1 Evaluation Procedure

s t r u c t d a t a s t r u c t u r e d a t a s t r u c t u r e ;
f o r ( i n t i = 0 ; i < epoch ; ++ i ) {

i n t * s a m p l e c o u n t s = g e n e r a t e s a m p l e c o u n t s ( ) ;
s t r u c t sample ** sample s = g e n e r a t e s a m p l e s ( ) ;
unsigned ** d e l a y s = g e n e r a t e d e l a y s ( ) ;

#pragma omp p a r a l l e l {
i n t t i d = omp get thread num ( ) ;
f o r ( i n t j = 0 ; j < s a m p l e c o u n t s [ t i d ] ; ++ j ) {

d a t a s t r u c t u r e . w r i t e ( s amples [ t i d ] [ j ] ) ;
b u s y s l e e p ( d e l a y s [ t i d ] [ j ] ) ;

}
}

#pragma omp p a r a l l e l
d a t a s t r u c t u r e . r e a d ( )

}

C. Results and Discussion

Providing actual queue semantics is costly and data struc-
tures with them performed significantly worse. However, many
ingestion solutions rely on such data structures despite not
needing queue semantics.

1) Writing performance results: In the performance com-
parison of writing with delay = 0 ns (Figure 2a), HUILLY
outperformed all other data structures, with a writing through-
put reaching a plateau of 20GB/s with more than 9 threads.
HUILLY’s performance is limited only by memory bandwidth.
mc_queue also showed good scalability due to its similar de-
sign to HUILLY, but HUILLY performed better by eliminating
atomic operations and avoiding thread synchronisation.

Figures 2b, 2c, 2d, and 2e demonstrate the writing perfor-
mance with 50 ns, 800 ns, 2000 ns, and 4000 ns write delays,
respectively. Increasing the delay reduces throughput and hides
performance degradation in some data structures. HUILLY
outperforms other solutions even in imbalanced experiments
(Figure 2f).
tbb_queue and tbb_bounded_queue were excluded

from the experiments on the ARM machine because of pos-
sible bugs in their implementation, manifesting in the form
of live-locks. The results in Figure 3 show that HUILLY out-
performs all other scenarios except for imbalanced workload
where mc_queue performs slightly better. Both HUILLY and
mc_queue plateaued at 24 threads, but HUILLY is still 2.5x
faster than mc_queue. Our proposal and mc_queue are the
only ones where the writing performance does not decrease
with an increasing number of threads. Other data structures
show an upside-down U curve, where the performance rises
until a certain number of threads and then drops.

2) Reading performance results: As the reading perfor-
mance remains unaffected by the writing delay, we have



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Threads

101

102

103

104

W
rit

e 
th

ro
ug

hp
ut

 [M
B/

s]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Threads

101

102

103

104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Threads

101

102

103

104

HUILLY
mutex_vector

tbb_vector
tbb_queue

tbb_bounded_queue
boost_queue

ms_queue
mc_queue

vyukov_queue
opt_atomic_queue

folly_queue
raml_queue

(a) delay = 0 ns (b) delay = 50 ns (c) delay = 800 ns

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Threads

101

102

103

104

W
rit

e 
th

ro
ug

hp
ut

 [M
B/

s]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Threads

101

102

103

104

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Threads

101

102

103

104

HUILLY
mutex_vector

tbb_vector
tbb_queue

tbb_bounded_queue
boost_queue

ms_queue
mc_queue

vyukov_queue
opt_atomic_queue

folly_queue
raml_queue

HUILLY
mutex_vector

tbb_vector
tbb_queue

tbb_bounded_queue
boost_queue

ms_queue
mc_queue

vyukov_queue
opt_atomic_queue

folly_queue
raml_queue

HUILLY
mutex_vector

tbb_vector
tbb_queue

tbb_bounded_queue
boost_queue

ms_queue
mc_queue

vyukov_queue
opt_atomic_queue

folly_queue
raml_queue

(d) delay = 2000 ns (e) delay = 4000 ns (f) imbalanced workload

Fig. 2: Writing Performance for the x86 architecture—logscale on y axis.
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Fig. 3: Writing Performance for the ARM Architecture—logscale on y axis.

only demonstrated the results with a writing delay of 400
ns, both for the x86 and the ARM machine. Figure 4a
shows that our proposal outperforms mutex_vector and
tbb_vector, which are also array-based data structures
that facilitate efficient data reading by OpenMP threads. The
improvement can be attributed to the peculiar internal topology
of Haswell/Broadwell Xeons, where cores are interconnected
in two rings. Although mc_queue is also an array-based
data structure, it employs atomic operations to enforce relaxed
ordering semantics, decreasing performance.

On the Kunpeng machine, the mutex_vector is outper-
forming every other data structure, as far as reading operations
are concerned. This is in some way unexpected, but we
speculate that the compiler can carry out some optimisations
(e.g., automatic vectorization) that is unable to apply to the

other data structures.
As an additional consideration, the peaks in performance

that can be observed for HUILLY and the tbb_vector at
respectively 12 and 16 threads are reproducible and not caused
by noise. We suspect some microarchitectural reason.

3) End-to-end performance results: Figure 5 displays the
end-to-end cost of writing and reading one million 64-
byte samples. Four different kinds of scalability behaviour
are exhibited. With high scalability, the end-to-end cost de-
creases with larger thread counts. HUILLY is consistently
exhibiting this behaviour. With limited scalability, the end-
to-end cost does not decrease beyond a certain number of
threads. This is observed in tbb_vector, tbb_queue, and
mc_queue in all figures. The third one also has limited-
scalability, however, beyond a certain contention, an additional
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Fig. 5: End-to-end Time for the x86 Architecture—logscale on y axis.

performance degradation can be observed. This is the case
for boost_queue, raml_queue, and folly_queue as
shown in Figure 5c. Finally, almost non-existent scalability
is observed, i.e., the end-to-end cost increases even with
only two threads. This undesired behaviour is shown by
boost_queue and raml_queue in Figure 5b.

HUILLY is the most scalable data structure for all de-
lay configurations, with significant speed-ups compared to
tbb_vector. The increase in scalability for longer delays
is due to reduced contention and larger delays than queue
operations.

On the ARM machine, as shown in Figure 6, our
proposal outperforms boost_queue, ms_queue, and
vyukov_queue, except for larger delay configurations
where the gap with tbb_vector becomes significant only
with greater thread counts. The abundance of cores in the CPU
makes it difficult to conceal the lack of scalability of less
efficient data structures.

V. CONCLUSIONS

We introduced HUILLY, a non-blocking ingestion buffer
for high-concurrency fork-join applications. It delivers sig-
nificant improvements in throughput through domain-specific
optimizations, making a strong case for preferring tailored

approaches over generic data structures for high-throughput
needs.
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