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ABSTRACT
Parallel Discrete Event Simulation (PDES) is a modelling technique
that takes advantage of concurrent computing resources. However,
its asynchronous nature can present challenges for efficient execu-
tion. This paper proposes a new non-blocking management system
for handling messages and anti-messages in TimeWarp simulations.
This approach exploits the benefits of non-blocking algorithms to
surpass the limitations of existing blocking mechanisms, resulting
in more efficient and scalable simulations. Specifically, the approach
relies on efficient atomic fetch-and-add operations provided bymod-
ern computer architectures for evaluating and updating the status
of the event.
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1 INTRODUCTION
Parallel Discrete Event Simulation (PDES) is a modelling technique
specifically designed to take advantage of concurrent computing
resources. Despite its potential to speed up simulation, the asyn-
chronous nature of PDES presents both difficulties and possibilities
for efficient execution. Time Warp [6] is one of the many synchro-
nisation methods available to manage this asynchronicity and has
gained considerable attention.

Time Warp executes models speculatively, permitting logical
processes (LPs) to optimistically advance their local simulation
time without waiting for other concurrent processes to reach a
synchronised state. This strategy offers the potential for increased
parallelism, but also introduces the problem of causality errors,
where events are processed out of their correct causality order. To
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resolve such issues, Time Warp incorporates the rollback mech-
anism to restore (locally) the simulation to a previous consistent
state from which to restart execution. Key to this mechanism is the
management of events and their counterparts, known as anti-events.

Their management is central to ensure both the correctness and
efficiency of a Time Warp-based simulation, as it typically belongs
to the critical path of the simulation main loop. In fact, poor event
management may increase the rollback frequency as a secondary
effect of increased clock skew between different LPs, negating the
benefits of parallel execution and significantly increasing compu-
tational overhead. Previous works [16] have already observed this
phenomenon, showing that optimising event management can re-
sult in up to 30% improvement in simulation efficiency and can
avoid severe rollback explosions.

In this paper, we propose a simple yet effective strategy to effi-
ciently manage messages and anti-messages in a Time-Warp sim-
ulation runtime environment. Our proposal is essentially a non-
blocking algorithm that allows concurrent worker threads to ad-
vance the simulation and maintain a consistent view over event
processing, also when event queues are shared between the different
threads. Relying on non-blocking synchronisation can efficiently
exploit the computing power of systems with a high degree of par-
allelism, like those often used for PDES, especially when dealing
with traditional data structures used to support simulation [3].

Our non-blocking algorithm is based on a per-event finite-state
machine that describes event “history” since their creation. Because
the state machine is part of the event metadata, it can be managed
by multiple worker threads, and it can also be transmitted over
the network in distributed simulations, or it can be moved across
different data structures locally, e.g. if future and past event sets are
maintained in different data structures for performance reasons [11].
Since the state of the event can be represented using few bits, the
state machine can be manipulated using efficient read-modify-write
instructions. In this way, no explicit synchronisation is required,
and the relevant aspects of the life of an event can be traced globally.

The remainder of this paper is structured as follows. In Section 2
we discuss related work. Our non-blocking event management
scheme is presented in Section 3. The results of our experimental
evaluation are shown in Section 4.

2 RELATEDWORK
The management of messages and antimessages in Time Warp
simulations is a core operation, which has been extensively studied
in the literature to improve the performance of simulations.

The work in [1] discusses a protocol for speculative parallel
discrete event simulation designed to manage events efficiently
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without blocking, using local rollback mechanisms to handle in-
accuracies. Although the high-level idea resembles what we are
proposing in this paper, it focusses only on deterministic models,
where potential message arrival times are predictable. Conversely,
our state-machine-based approach adheres to the more general
Time Warp protocol and can recover any model from possible out-
of-order executions.

SPEEDES’ approach to speculative parallel discrete event sim-
ulation [16] focusses on memory optimisation and the efficiency
of event processing. Memory efficiency is enhanced by using free
lists for memory management and the adoption of selective state
changes to minimise unnecessary memory operations. Events are
also augmented with information that describes the state changes
performed by their execution. The Delta Exchange mechanism fa-
cilitates rapid rollback capabilities, similar in spirit to incremental
checkpointing [10]. Additionally, event list management employs
two distinct lists: one sorted and the other unsorted. This dual-list
system aims to enhance performance by reducing the sorting over-
head, with a reported superlinear speedup thanks to this approach.
Similarly to our proposal, performance improvements in [16] re-
lated to event management can be based on differentiated tasks
carried out to manage event reception and processing. However,
we target operations completely different from [16].

Lazy cancellation and lazy re-evaluation [18] are techniques that
try to reduce the impact of cascading rollbacks and event reprocess-
ing, respectively. In both approaches, it is necessary to augment the
data structure representing an event implementing explicit state
machines, similarly to what we do. For example, in lazy cancel-
lation [15], antimessages are sent out only if an output message
reproduced after rollback is different from the previously-sent ver-
sion. To avoid clock skew, special blocking events are sent upon
a rollback, to temporarily mark previously sent output messages
as blocked until the sender LP has decided whether or not they
are correct. In lazy re-evaluation [8], previously-computed states
are reused whenever possible. In particular, if the reprocessing of
a straggler does not change the simulation trajectory, the execu-
tion can be jumped forward. To enhance performance, messages
could be organised in trees and augmented with flags that describe
whether they produced a state change. These metadata allow to
avoid costly state comparisons. In addition, events could be used
to maintain metadata describing hit/miss ratio of lazy cancella-
tion [13, 14], enabling autonomic switching between the two.

3 NON-BLOCKING EVENT MANAGEMENT
In Time Warp, positive events (𝑒+) are coupled with their negative
counterparts, called anti-events (𝑒−). The purpose of anti-events
is to annihilate positive events that have been spread around the
simulation, possibly having also already been processed. We con-
sider an event 𝑒 = (𝑒+, 𝑒−) as the logical union1 of a positive event
𝑒+ and a negative event 𝑒− . An event 𝑒 conceptualises the idea
that, in general, positive and negative events can be received in any
order and that, if both positive and negative appear in the same
node, 𝑒 annihilates itself. The effect of this annihilation could be
the execution of a rollback operation, which could in turn send out
additional anti-events.

1This notation recalls the concept of zsets in [7].
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Figure 1: Non-blocking anti events

From a practical point of view, we can capture the lifecycle of
an event 𝑒 as a set of different stages, as follows:

• creation of the positive event 𝑒+ by the source LP and inser-
tion into the future event set of the destination LP;

• extraction, processing by a destination LP, and insertion into
the past event set.

• removal from the past event set as part of a rollback operation
initiated by the receipt of a straggler message 𝑒+𝑠 ≠ 𝑒+, which
causes the reinsertion of 𝑒+ into the future event set;

• annihilation, leading to its removal from either the future
event set (if still in transit) or the past event set, with a
rollback operation if necessary.

• commitment, if the event falls beyond the global virtual
time’s commitment horizon.

Each of these stages may be considered as an atomic operation
and implemented as such, in the sense that no transient states are
ever observed; for example, an event extracted by a processing
thread would be processed and inserted into the past event set
without any visible interruption.

As a result, at any given moment, an active event, i.e. an event
that has not yet reached a terminal state such as annihilation or
commitment, can either be in the past or the future event set; at
the same time, it can either be valid or invalidated. The logical
superposition of these four different states gives rise to the finite-
state machine depicted in Figure 1, which can be represented using
two flags packed in the same word, which we call the processed flag
and the anti-event flag, respectively.

This representation enables the use of efficient atomic fetch-
and-add operations offered by modern computer architectures to
evaluate and update the status of the event. Fetch-and-add is a
Read-Modify-Write operation, typically based on single machine
instructions, that performs two fundamental actions atomically: it
reads the current value from a memory location and then adds a
given value to it, subsequently storing the result back in the same
memory location. The atomicity of this operation ensures that no
other operations can intervene between the fetch and the add, thus
preventing race conditions.

When an event is created, it is not subject to concurrent access
by other threads, so both flags can be safely initialised to false. Then
the events can be regularly inserted in the future event set of the
destination LP. The way to correctly carry out this latter operation
depends on the data structure being used for the set and on whether
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it is private (e.g., per LP) or shared (e.g., per thread). Conversely,
when a thread extracts an event from the future event set, it atom-
ically retrieves the two flags of the message while marking the
event as processed2. In this way, the thread acquires ownership
of the event. The need for an atomic acquire operation lies in the
possibility that multiple threads can compete to acquire the event
to schedule an LP, for example, in scenarios where there is a loose
binding between threads and LPs (see, e.g., [5]).

More importantly, in our proposal, we consider the possibility
that the same event is placed in both future and past event sets
at the same time. The reason for this strategy is that some house-
keeping operations, which are executed on the critical path of the
simulation, may be too costly if executed all at once; therefore, it
makes sense to spread different parts of the operation across differ-
ent worker threads—this approach recalls the grounding principles
of flat combining [4]. One worker thread will therefore perform
part of the housekeeping operation, e.g. updating the state machine
of the event and moving it to the future event set, while another
one will finalise the operation, e.g. ordering the event in the future
event set to prepare for the next event extraction.

Therefore, there are three possible scenarios to handle, based on
the value of the flags that is atomically fetched (i.e., the old value
before the fetch-and-add is completed):

• if the processed flag is false and the anti-event flag is false,
then the event is a fresh one, so it is processed normally;

• if the processed flag is false and the anti-event flag is true,
the event has been marked as inconsistent by another thread
by sending the negative counterpart 𝑒− that was received
before processing 𝑒+, so it is safely deallocated;

• if the processed flag is true and the anti-event flag is true,
we incurred in an inconsistent event that this LP already
processed, so it is handled using the standard Time Warp
logic, namely searching for the matching event in the past
event set and performing a rollback.

Similarly, when a thread has to mark an event as invalid, it
atomically retrieves the two flags of the message while marking
the event as inconsistent. An already invalidated message cannot
be again invalidated, so there are only two possible scenarios:

• if the processed flag is false and the event is still in the
future event set, no further operations are needed: when a
processing thread will extract it, it will directly discard it;

• if the processed flag is true and the event has been already
processed, it is reinserted into the future event set so that it
will be processed as a regular anti-event when a processing
thread extracts it.

In addition, when a thread has to rollback a logical process to
a previous consistent state, it will remove from the past event set
the events that occurred between the current LP state and the re-
ceived straggler/anti-event. Some of these events may still be valid,
while others may have been marked invalid by another concurrent
rollback operation. To efficiently distinguish the two conditions,
the two flags of the message can be atomically retrieved while un-
marking the event as processed. The processed flag had already

2The event is marked as processed before its processing is completed in wall-clock
time. This is in accordance with the event being an atomic unit of execution in Time
Warp.

been set after the extraction, so here are the two possible scenarios
to deal with:

• if the anti-event flag is false, the event is still valid and is
placed back into the future event set;

• if the anti-event flag is true, the event has been marked as
invalid, but the invalidating thread has already put it back in
the future event set, so deallocation is not necessary—indeed,
it would be incorrect, because there is another reference to
the event in the future event set.

When the event overcomes the commitment horizon, i.e. its
associated timestamp falls behind the value of the Global Virtual
Time (GVT), it can be safely deallocated. The commit operation does
not need to handle concurrency, because for a correctly computed
GVT, no thread will ever mark a committed event as invalid.

4 EXPERIMENTAL ASSESSMENT
We have implemented our proposal in the ROme OpTimistic Simu-
lator (ROOT-Sim) [9]. We carried out our experimental evaluation
on a server equipped with an Intel Xeon 2699v4 CPU with 128
GB of memory. Each data point is the average of 15 runs. As the
simulation model used to benchmark our proposal, we have used
the traditional PHOld [2] benchmark and a variant, named PHold
Memory, originally proposed in [17], which simulates a set of LPs
that interact through events distributed randomly on the set of
LPs. Events’ timestamps are drawn according to an exponential
distribution, thus implementing Poisson processes. The variant we
have used entails reading/writing to memory buffers of variable
size kept in the LP’s simulation state. Buffers are also transferred
between LPs, as payloads of exchanged events. Both models have
been run with 10,000 LPs.

In Figure 2, we provide the results when running the PHold
Memory benchmark. In our configuration, we have used a dynamic
array for the past event set, and we have experimented with two
different data structures to represent the future event set, namely a
heap and a skip list [12].

Beyond the non-blocking management presented in this paper,
we have also used two different scenarios for comparison: in one
scenario, theworker thread immediately discards annihilated events
(we refer to this configuration as eager deletion in the plots), while
in the other the deletion of the annihilated event is performed lazily,
only when the event is extracted again (lazy deletion in the plots).

We note that eager deletion from the skiplist is an operation
with logarithmic asymptotic cost, while, for the binary heap, the
same operation has a worse linear bound.

From the results, we observe that lazy deletion provides the
worst performance in the simulation. This is true for both skip-list
and heap-based configurations. Indeed, in this model configuration,
as indicated by the efficiency plots, we have a sizeable number of
generated anti-events, which, for the lazy deletion strategy, tends
to saturate the future event set.

Eager deletion, by preemptively removing annihilated events
from the future event set, keeps the size of the future event set
under control, avoiding the aforementioned phenomenon.
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Figure 2: Results for PHold memory
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Figure 3: Results for PHold

When relying on a heap to maintain the future event set, the per-
formance is generally higher than in the case of a skip list. Neverthe-
less, if the skip list is coupled with our non-blocking management,
it outperforms the heap, also when eager deletion is employed.

Our proposal can contain the size of the future event set like
the eager deletion, but without incurring the cost of explicit re-
moval, similarly to the lazy approach. The impact of our proposal
is larger for hard-to-parallelise models, such as the one used in this
evaluation; with 22 threads, the maximum speedup achieved is ∼ 8.

Lazy deletion achieves greater efficiency because the higher
cost of future event set management is effectively throttling the
execution of events. In friendlier scenarios, like the one shown
in Figure 3, heap lazy deletion is competitive, outperforming our
proposal by 15% with 2 threads. The gap narrows down with higher
thread counts, because anti-messages increase in number and, as
mentioned, in these contended scenarios lazy deletion does worse.

On the other hand, skip-list lazy deletion does not provide good
performance. We speculate this is due to lazy deletion increasing
the size of the future event set. Apparently, the skip list reacts to
this size increase with a larger variance in queue management costs,
resulting in a higher rollback probability, as shown by the efficiency.

Using vanilla PHold, heap eager deletion fails to provide any
acceleration compared to serial execution. Specifically, our exper-
iments timed out with durations exceeding 5 times that of serial
execution. Other missing data points in the plot are a result of this
time-out choice. Skip-list eager deletion, because of better asymp-
totic bounds, is still able to scale reasonably.

Overall, our proposal behaves competitively, providing stable
performance in both proposed evaluation scenarios. In general, we
observe that anti-events management strategies have a difficult to
predict effect on final performance.

5 CONCLUSIONS
In this paper, we have presented a simple yet efficient way to han-
dle the lifecycle of events in a Time Warp simulator. By relying
on atomic fetch-and-add instructions, multiple worker threads can
query and update a finite state machine that describes the current
evolution of an event 𝑒 that can travel back and forth across dif-
ferent queues representing the future and the past event set. The
results have shown that the simple introduction of non-blocking
management of events can produce a non-minimal speedup over
other common strategies.
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