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Abstract—Leveraging multiple threads to process high volumes
of simulation data is a prevalent strategy in modern streaming
data processing systems. Statically binding operators to specific
threads is the most common design employed due to its simplicity
in implementation and initial system configuration. However, this
approach often fails to effectively account for the inherently dy-
namic nature of simulation data, potentially leading to inefficient
resource utilisation and processing bottlenecks. To address these
limitations, we present a novel mechanism for stream-processing
operator rebinding that enables lock-free, dynamic workload
rebalancing between worker threads. The rebinding is driven
by an autonomic policy that captures workload imbalance in the
stream-processing pipeline when multiple queries are computed
and reacts to it by moving computation around the different
threads. We evaluate our proposal using data generated from
large-scale traffic simulations on which multiple queries are
executed. The volume and organisation of the data we feed to
the stream-processing pipeline significantly change over time,
providing excellent grounds to evaluate our rebinding policy. The
evaluation confirms that the performance of stream processing
pipelines can be greatly improved using local operator rebinding.

Index Terms—Stream processing, simulation data processing,
non-blocking algorithms

I. INTRODUCTION

Simulation is essential in various fields and is now con-
sidered the third pillar of science, alongside theoretical and
empirical methods. It has become highly complex, involving
extensive models and numerous computationally intensive
experiments. Modern simulations can achieve remarkable ac-
curacy, allowing for practical what-if analyses and exploring
alternative scenarios through multiple concurrent simulations.
However, the increased level of detail in simulations and
the scale enabled by distributed parallel computing pose a
significant challenge for analysing the results.

The research community is aware that traditional approaches
based on aggregating all generated data for post-processing are
not viable [1], mainly due to I/O bottlenecks related to storing
large amounts of data [2]. Conversely, processing simulation
results using stream processing has been shown to be a viable
solution [3].

Nevertheless, this approach shifts the performance focus to
the stream processing pipeline. If this pipeline cannot cope
with the amount of data generated by high-performance sim-
ulations, (soft) real-time requirements in the data processing

may be violated. This aspect is quite relevant because simu-
lations used for what-if analysis can be coupled with online
interactive tools that allow analysts to execute different queries
while the simulation is running, to explore specific parts
of the simulation-generated data or to focus on alternating
parts of the simulated world [4]. At the same time, stream
processing applications are subject to changing conditions
and fluctuations (e.g., workload, input rates, and environment)
at runtime [5] as a result of natural emergent complexity
in the simulation execution. Configurations that cannot cope
with some quality of services can become suboptimal very
quickly [6].

Recent works have tackled this problem by proposing
strategies to pre-process part of the data in the simulation
engine (the so-called in-situ computation, see, e.g., [7]) or
relying on a set of distributed nodes (in-transit computation,
see, e.g., [8]), or a mixture of the two (see, e.g., [9], [10]).
These computation paradigms try to cope with the burden of
the processing task by selecting the best-suited location to
carry out part of the computation and dynamically adapting to
changes in the workload [10]. In general, this is a specific in-
stance of self-adapting computation [11], a form of autonomic
computing [12], where the system changes its behaviour in
response to input rate and data volumes fluctuations following
non-stationary distributions across stream partitions. In stream
processing, a self-adaptive computation may change the batch
size or the parallelism degree to reach a certain goal of
performance or energy efficiency [13].

From the point of view of computing resources, we can now
exploit exascale architectures [14], capable of executing in par-
allel massive computations relying on large amounts of cores
available. If orchestrated effectively, this increased processing
capability can support the analysis of large-scale simulation
data without the need to rely on complex distributed systems,
thus possibly also reducing the energy footprint of the pipeline.
Single-node stream processing has received limited attention,
primarily due to perceived limitations in processing power and
memory constraints, but is being recently considered a viable
solution [15], [16].

In this paper, we follow this recent path and propose a
lock-free [17] operator rebinding mechanism, coupled with
an innovative operator rebinding policy, that can effectively
sustain the computational complexity of executing multiple



stream-processing queries on the data produced by large-
scale simulations. Lock-freedom in operator rebinding offers
several benefits. When the load on the different operators is
detected to have changed significantly, it allows to react to this
change without having to stop the current processing activities,
resulting in better utilisation of system resources and improved
overall throughput. Additionally, it can reduce latency and
improve the system’s responsiveness, making it well-suited for
real-time or near-real-time processing requirements.

We exercised our methodology using various configurations
of an agent-based simulation model on top of the CityMoS
simulation framework [18], a high-performance microscopic
traffic simulator. We chose to focus on microscopic traffic
simulation for this study because 1) it allows to model
synthetic scenarios that generate both large amounts of data,
2) emergent complexity of chaotic traffic models naturally
produce unforeseeable and non-stationary fluctuations, and 3)
it is straightforward to support multiple data analytics queries
computing continuously traffic metrics with different degrees
of complexity. Our experimental evaluation demonstrates that
the self-adaptive orchestration of data analytics activities can
significantly reduce the time it takes to complete joint simu-
lation and analytics activities.

II. RELATED WORK

In general, operator placement aims to distribute query pro-
cessing over network nodes to meet system goals effectively,
but finding the optimal placement is NP-hard [19]. Heuristics
are often employed to achieve near-optimal solutions. A lot
of work has been done by the research community in this
direction. We refer the reader to [13], [20]–[22] for a compre-
hensive discussion. Here, we focus on relevant contributions
related to two orthogonal aspects we deal with in this paper:
how to implement operator migration effectively and how to
decide when/what to migrate.

The simplest migration method involves moving the oper-
ator to a new host and replaying necessary historical tuples
from upstream nodes [23]–[25]. In [26], both the old and new
hosts receive the same tuples during migration, allowing a
gradual handover and minimising operator downtime. State
shedding [27] migrates only the most essential partial states
and drops less important ones if the total state is too large.
Streams can also be redirected from upstream nodes to the
new host, which buffers the streams and starts processing them
once the state from the old host is received and installed [28],
[29]. Other methods send control messages to the old or
new host [30], [31]. In [32]–[34], to reduce the migration
time, an operator outputs to multiple replicas partitioned by
keys allowing to change key distribution. Some proposals
extend this approach by avoiding any pause phase during state
movement [35], [36].

Checkpoint-assisted algorithms [28], [37]–[41] require
sending only minimal state during migration. Priorities on
migrating partial states can be introduced to improve respon-
siveness [42]. Distributed checkpoint replication and incre-

mental checkpointing to speed up state migration are also
possible [28], [40].

Compared to all these proposals, we allow for a non-
blocking rebinding of the operators. This is thanks to the
reliance on a single fat node, which copes well with modern
high-performance architectures. Our approach benefits from
zero migration downtime; no network copy of the tuples is
required, and the balancing of the stream processing workload
can be extremely responsive.

Another problem related to operator migration is when
and what operators to migrate. These two aspects have a
significant performance effect on the overall stream processing
system. Migrating too often too many operators may incur
additional secondary costs that could jeopardise any expected
performance improvement. Three common methods to avoid
widespread migrations involve setting a threshold to ensure the
new placement’s score is significantly better than the current
one, triggering migration only when QoS guarantees are
violated, and periodically re-evaluating the objective function
at high intervals [43]. Interference scores have been used to
determine migration needs, moving operators to nodes with
less interference [44], though explicit cost-benefit analyses
were not performed. Migration mechanisms can be centralized,
relying on a coordinator [28], [29], [45], or decentralized,
initiated by the operator host [30], [39]. Multiple dependent
migrations can be planned and executed sequentially, such as
load balancing, where many keys of an operator are moved,
and geographically distributed operator graphs, where several
operators are migrated [46].

Some works solve the migration problem using Integer
Linear Programming (ILP) solvers [19], [47], [48], but these
may not scale well as they require a global network view.
Operator scaling, however, aims to minimise the number of
operator instances while maintaining QoS guarantees [49].
Stream-based overlay networks [50] use heuristic algorithms
to minimise network usage by placing nodes in a cost space
with latency and load dimensions, where node distances rep-
resent communication latency. Heuristic algorithms for load
balancing [44] aim to reduce interference impacting stream
processing performance by predicting future resource usage
and migrating computations to nodes with less interference if
a threshold is exceeded. Load balancing can also be achieved
using heuristic partitioning algorithms [51], which ensure
balanced key-to-server mapping through different approaches.
Elastic stream processing platforms [52] use heuristics with
predefined thresholds to scale resources up or down based on
CPU utilisation.

Accurately defining migration costs, manifested as increased
resource consumption or execution degradation, is crucial for
correct migration decisions. Most solutions measure migration
cost using specific metrics rather than modelling it, focusing
on tuple processing performance to model and measure bene-
fits. Few approaches calculate migration costs, but one model
predicts tuple latency by considering input rate, migration
time, and time before queued events can be processed [53].
The state size is often equated with migration time, typically



modelled without detailed calculations, with some solutions
migrating multiple operators simultaneously and defining mi-
gration time as the maximum time required [19], [47]. In
data center-based solutions, operator downtime depends on
adaptation type, state size, and round-trip delay [19], while
WASP uses state size and link bandwidth to define migration
time in wide area networks, solving a min-max problem to
minimise the slowest migration [47]. Cost models explicitly
defining migration time or cost are also used [26], [54],
[55]. State size frequently serves as an objective function in
migration decisions [31], [51] and as a constraint to prevent
costly solutions [56], sometimes being the sole criterion for
load balancing [57], [58]. Control message numbers during
migration, affecting total migration time, are crucial [46].
Defining migration cost in terms of time often overlooks
other factors, potentially skewing cost assessments. Mone-
tary migration costs distinguish between running the current
topology and making changes [59], [60]. In decentralised fog
and edge computing, metrics like network usage, bandwidth,
and link latency are vital, with overlay networks optimising
these for placement and migration decisions [50]. Similar
methods reduce the number of migrations to achieve optimal
placement [61].

A methodology to reduce interference between stream pro-
cessing operators uses an interference score based on predicted
future packet load [44]. WASP relies on an operator’s expected
input and output rates [47]. Latency constraints determine
migration needs, with systems scaling out or load balancing if
constraints are not met, and lower latency constraints increase
operational costs [62]. Load balancing solutions use load
or tuple performance, minimising variance between nodes,
which may require expensive migrations [51]. Resource usage
metrics include threads assigned to operators [63] or the CPU
queue state [64]. Elasticity-based solutions adjust resources
based on workload, scaling out if overloaded [65]. In decen-
tralised fog-based solutions, a cost space model constructs
topology based on latency, bandwidth, and load [50]. Many
studies minimise migration costs by reducing the number, fre-
quency, or magnitude of migrations [54], [66]. Single-objective
optimization [47], [51], [58], [67] or simple additive weighting
with multiple objectives [19], [31], [68]–[70] are used, with
constraints ensuring acceptable placement quality. Hotspot
alleviation reduces migrations while maintaining QoS [71],
and relaxation algorithms reduce migrations before optimal
placement [61]. Thresholds ensure beneficial migrations trig-
gered by load imbalance or migration benefits exceeding
costs [50]. QoS violation adaptability is predicted using linear
regression [71] and predictive latency models [65]. Gaussian
processes estimate load and latency for scaling decisions [59],
and extended Gaussian Processes upper confidence bound
algorithm models service capacity [72]. Real-time resource us-
age prediction employs incremental learning techniques [73],
while MPC predicts optimal scaling decisions [36]. Reactive
and proactive scaling decisions are used in the Elysium sys-
tem [54], with reinforcement learning determining scaling tim-
ing [69], and operator load predictions considering tuples dur-

ing a prediction horizon [74]. WASP estimates expected rates
to assess load [47]. Combined migration strategies use window
state knowledge to schedule minimal state migrations [75],
and the Phoebe system predicts workloads for near-optimal
scaling using multiple regression and clustering [76]. Finally,
also energy consumption for resource-constrained systems can
be considered to initiate a migration [77], [78].

We show that very simple policies (e.g., based on greedy
algorithms) can deliver good query throughput for single-node
stream processing jobs, ensuring timely online simulation data
processing.

III. OPERATOR REBINDING

At first glance, a query is the unit of computation in a stream
processing engine. Nonetheless, queries are not monolithic,
opaque pieces of computation; rather, they are described with
the aid of some formalism. For instance, employing common
Streaming SQL concepts [79], queries can be defined by com-
bining selections, projections, joins, and window aggregation
of tuples. More generally, a query describes a computational
tree, where leaves are data sources, the root is the query
output, and non-leaf vertexes are the operators that compose
the query.

A streaming engine is expected to cope with multiple
queries being executed simultaneously. As an optimisation, or
with explicit configurations from the user, query trees that
share one or more operators may be partially merged. In
general, even when shared operators are merged together, the
queries submitted to a streaming engine implicitly define a
global Directed Acyclic Graph (DAG), which we will refer to
as computation graph. Therefore, at a high level, the operation
of a streaming engine consists of evaluating the computation
graph whenever fresh data is available at one of the data
sources.

Triggering a computation every time a new tuple is ingested
would be severely inefficient; streaming engines commonly
employ buffering or tuple batching to achieve good through-
put. Indeed, in most implementations, once enough tuples have
been collected, a new computational task containing them is
spawned and scheduled into the system. Increasing the size of
the tuple buffer reduces the scheduling overhead per tuple but,
conversely, increases latency. As a result, especially in low-
latency scenarios, task scheduling can be a system bottleneck.

In addition, to efficiently use multi-core machines, it is
necessary to partition the workload across the available com-
putational resources. In our previous work [80], we deal with
large simulation sources that generate considerable amounts
of data at each timestep of virtual time. An effective paral-
lelisation strategy in that scenario involves buffering all the
tuples for a given timestep and evenly partitioning them across
the processing threads. Then, the computation graph can be
traversed synchronously by all the threads in a coordinated
fashion. This strategy achieves great throughput by exploiting
the data parallelism of large simulations, but it leads to higher
latencies because query computations have to wait for the
completion of previous simulation timesteps.



Most commonly, though, streaming engines deal with bursty
tuple generation patterns, as could be the case when simulation
output is used in interactive applications. For example, users
may play with simulation pacing and remove or insert new
queries relatively often [81]. In such cases, it is possible to
exploit the task parallelism exposed by the computation graph,
by scheduling computational tasks at the granularity of each
vertex, allowing operators to process their incoming tuples
concurrently and asynchronously.

The most straightforward way to implement this concur-
rency scheme is to use a global monolithic scheduler, which
can be designed as a priority queue of tasks ordered by their
simulation virtual time. The literature offers fairly efficient
non-blocking implementations that eliminate the need for mu-
texes [82]–[84]. However, as we will demonstrate experimen-
tally, this approach is not optimal for interactive applications,
even when state-of-the-art data structures are used.

The alternative approach (see, e.g., [85]), which involves
having a separate task queue for each thread, can provide
better throughput on the same hardware and experience less
unpredictability in latency. The multi-task queue design, while
mitigating the single queue bottleneck, incurs additional im-
plementation complexities and opens up new problems, such
as deciding which tasks are scheduled on which queues. A
partial solution to the problem consists of binding operators to
processing threads, i.e., scheduling computational tasks meant
to be processed by a certain operator i always to a certain
thread j, according to some stable mapping.

A. Problem Statement

As mentioned earlier, a DAG can capture the dependen-
cies between multiple operators across various queries. Let
G = (V,E), where V is a set of vertices, each Vi ∈ V
representing an operator, and E is the set of directed edges
representing the flow of data streams between operators. Let
T = {T1, T2, . . . , Tm} be the set of available threads in a
multi-core system.

As a baseline, we consider static binding, where the system
maps operators to threads using a function Mstatic : V → T and
maintains this mapping throughout the entire lifetime of the
stream processing application. Static binding is straightforward
and efficient regarding setup time and overhead, but heuristic
algorithms are necessary since computing the optimal binding
is generally an NP-hard problem [19]. In addition, the binding
quality depends on the workload exerted by each operator,
which is unknown at startup and may change over time. This
dynamic aspect emerges from several factors, such as varying
load on the machine that runs the streaming engine or the
non-linearity of computational requirements of operators with
respect to input data rates. This can be particularly relevant
when processing the output of large-scale simulations, which
can produce terabytes of data [86].

For these reasons, in this paper, we consider dynamic
binding, where the system applies an initial operator-to-thread
mapping M0 : V → T , then periodically assesses the
computational cost of the operators and applies new mappings

Mi : V → T at runtime to adapt to the changing conditions.
Especially when simulations are used as data sources, large
workload variance is expected; as a result, achieving decent
performance requires performing load balancing of operators
fairly frequently. At the same time, we consider scenarios
where machines with many cores are utilised to carry out the
stream processing activities. Therefore, the dynamic binding
policy that we study is specifically tailored to this particular
setup.

B. Operator rebinding policy

The dynamic operator rebinding problem is often tackled
using heuristic policies based on greedy algorithms. These
algorithms are known for their ability to find satisfactory so-
lutions within a reasonable amount of time and computational
resources [87].

To introduce the proposed greedy policy, we define the
following quantities. First, tuple count represents the number
of pending tuples an operator must process, defined as:

tuple count(i) = tuple rcv(i)− tuple proc(i), (1)

where i is the id of an operator, and tuple rcv and tuple proc
are the total number of tuples that operator i has received and
processed, respectively.

Second, op comp is the average time that an operator takes
to process the last w tuples, defined as:

op comp(i) =

∑w
k=1 tuple comp(i, k)

w
, (2)

where i is the operator id, tuple comp represents the time
the operator i requires on average to process a tuple, while k
represents the tuple id in the latest w tuples.

Third, wl is the workload of a thread, computed as:

wl(t) =
∑

i∈sub op(t)

op comp(i) · tuple count(i), (3)

where t is the thread id, and sub op represents the set of
operators bound to thread t.

Finally, wl avg, the average workload of all threads, is
computed as:

wl avg =

∑thread num
t=1 wl(t)

thread num
(4)

where thread num represents the total number of process-
ing threads and wl(t) is the thread workload as defined in
Equation (3).

An important aspect related to operator rebinding lies in
the amount of housekeeping work that is required to install
a new binding. In particular, the rebinding operation must
be transparent with respect to the stream processing queries
that are being computed. That means that the result of the
queries must be the same as if only the Mstatic binding
was used, independently of the sequence M0,M1, . . . ,Mn

that are installed during the lifetime of the stream processing
application. If this condition is not met, we can consider the
query result incorrect because of the dynamic binding.



Therefore, the system installing the selected thread-to-
binding (which we shall discuss in Section III-C) must ensure
that a batch of tuples currently being processed is either
completed or replayed at the destination thread, that all
buffered tuples are migrated to the destination thread, and
that all incoming tuples are redirected to the destination
thread. These housekeeping operations can incur significant
costs, which may negate any short-term benefits of the new
operator binding. If rebinding is computed frequently, as we
are considering, the overall performance may degrade to an
unacceptable level.

Therefore, we have designed our greedy rebinding policy
to incorporate previous binding information and consider
preferred thread workloads. We present in Algorithm 1 the
pseudocode of the greedy policy to recompute the operator-
to-thread binding.

The algorithm first copies the old binding
old op to thread to new op to thread, then computes
op wl according to Equation (3) and sorts it in ascending
order (lines 3–9). The main while loop pops the operator
with the smallest workload from op wl and gets the thread
id j it belongs to (lines 11 and 12). Then, we check the
workload wl[j]; if wl[j] > avg wl, indicating that the thread
is handling a workload larger than the average, we rebind
the operator to another thread to achieve a better thread
workload balance. The thread k, which has the least workload
in wl, will be chosen for the rebinding. After updating the
new operator binding in new op to thread, we update the
current wl for threads k and j accordingly. Specifically,
thread k, where the operator is bound to, will increase its
workload, while thread j, where the operator is removed
from, will decrease its workload (lines 13–17). However,
if wl[j] ≤ avg wl, it indicates that the current thread can
handle the existing workload, and thus, there is no need to
rebind the operator to a different thread.

C. Non-blocking Rebinding

From the implementation’s point of view, operator process-
ing can be decoupled from the binding decision-making; in
other words, we can assume that an external process periodi-
cally evaluates the streaming engine’s state and requests that
new operator bindings be installed. Installing a new binding
clearly requires updating the global operator mapping. In addi-
tion, the processing threads need to move the tasks contained
in their local scheduler according to the new binding.

To guarantee the correctness of this process, processing
threads need to synchronise their rebinding activities. Other-
wise, critical data races may cause tasks to be executed out
of order or operators to be concurrently activated by multiple
threads. For example, let us analyse a system configuration
with two processing threads T0, T1, and a computation graph
O0 → O1 → O2. Let us assume a binding mapping that
assigns O0 to T0, and O1, O2 to T1. Now, let us assume that
T1 is engaged in a very long computation with operator O1, but
concurrently, a new binding that maps O1 to T0 is requested.
While processing O0, T0 may produce some new tasks for

Algorithm 1 Greedy

1: Input: tuple count, op comp, wl, avg wl,
old op to thread

2: Output: new op to thread
3: new op to thread ← old op to thread
4: op wl ← []
5: for i = 0 to operator num− 1 do
6: load = op comp[i] * tuple count[i]
7: op wl.append(load)
8: end for
9: ascending sort (op w)

10: while op wl is not empty do
11: (i, workload) ← pop first element from op wl
12: j ← old op to thread[i]
13: if wl[j] > avg wl then
14: k ← index of least workload in wl
15: new op to thread[i] = k
16: wl[k] += workload
17: wl[j] -= workload
18: end if
19: end while

operator O1 that, according to the new binding, would end
up in T0’s queue. T0 would then try to access and update
concurrently O1, resulting in a race condition.

We note that locking operators is not sufficient to avoid
consistency issues. Even if T1 is busy with a different task
during rebinding, T0 could still update O1 by executing a task
with a later timestamp than another one possibly still present
in T1’s queue, resulting in tasks being executed out of order.

The simplest way to avoid these concurrency problems
relies on explicit barrier synchronisation. With this approach,
whenever a new binding needs to be installed, a global flag is
set. Each processing thread periodically checks this flag, and
if it is set it waits on a thread barrier; when all the processing
threads reach the barrier, rebinding operations can be initiated
without fearing concurrent updates of operators. Finally, all
threads commit the newly installed binding by waiting on a
second thread barrier to avoid resuming operator processing
before all threads complete their own rebinding operations.

However, the drawback of this synchronous approach is
that processing threads must wait for the slowest one before
proceeding with rebinding and before resuming processing
after the new binding is applied. We propose an alternative
approach that does not require explicit barrier synchronisation.

In our non-blocking implementation, the global binding
mapping is maintained in an array of atomic integer variables
in which each entry represents the thread identifier to which
a specific operator is bound. To apply a new rebinding,
the requester process reads the entries o0, o1, . . . on of the
old binding, comparing them to the new binding entries
n0, n1, . . . nn. For every i where oi ̸= ni, the requester
schedules a special operator rebind task with the highest
priority destined to thread oi. When this task is processed,
thread oi updates the i-th entry of the global mapping array



TABLE I: Analytics queries—n is the number of agents.

Query Description

Agent count (Q1) Read the pre-computed agent number per road.
Computational complexity: Θ(1).

Average speed (Q2) Average speed of agents. Computational com-
plexity: Θ(n).

Top K speed (Q3) Get the speed of the top k fastest agents. Com-
putational complexity: Θ(n log(n)).

...

Source

Project

Project

Project

ts, id, x, y,
speed, acc, laneId ...

ts, id

ts, speed

Count

Average
Speed

Top K
Speed

ts, id, speed

Fig. 1: DAG for 150 queries.

to the value ni using an atomic store operation.
Clearly, leftover tasks for migrated operators may still be

present in the scheduling queues. This case is handled lazily by
checking each time a task is extracted whether it is intended for
the extracting thread. If not, the task is scheduled to the correct
thread; otherwise, processing continues as usual. Finally, to
address out-of-order task processing issues, we borrow the idea
of TCP sequence numbers: the generating operators assign
tasks a monotonically increasing sequence number. Similarly,
operators have a receiver sequence number that is increased
every time a task is successfully processed. Upon extraction,
tasks with higher epoch numbers than their receiver operator
are rescheduled so that other tasks may be processed.

With this precaution, the rebinding operation effectively
becomes an asynchronous process, where threads simulta-
neously carry out migrations and operators’ processing. In
the described system, processing threads never need to block
or wait explicitly for the completion of other operations.
Nonetheless, we note that the actual progress of streaming
engine operations ultimately relies on rebindings to eventually
complete task processing.

IV. EXPERIMENTAL ASSESSMENT

Similarly to [10], we employ three queries in the exper-
imental assessment; they are listed in Table I. Each query
is replicated 50 times, resulting in a DAG composed of
300 operators, as shown in Figure 1. The front dashed box
describes the operator representations of three queries.

We use the average latency of queries and query latency
distribution for performance evaluation. The average latency
is computed as:

q latency avg(t) =

∑q num
i=1 q latency(i, t)

q num
, (5)

where q latency(i, t) represents the latency of query i after
processing all tuples at time t, and q num represents the total
number of queries.

As mentioned, we rely on the CityMoS simulation frame-
work [18] to generate the data processed by the selected
queries. We conducted two different experiments to assess
the two different proposals set out in this paper. First, we
study the non-blocking rebinding when using our greedy
policy. This experiment allows us to determine whether non-
blocking rebinding can be competitive compared to more
classical methods to install a binding. Then, we study whether
our greedy policy can outperform classical strategies when
complemented with the discussed non-blocking rebinding.

We have run our experiments with Ubuntu 20.04.6 LTS on
a machine equipped with Intel Xeon E5-2680 v3 @2.50 GHz
CPUs with 12 physical/24 logical cores and 256 GB RAM.
Each data point is averaged over 5 runs.

To study the impact of the non-blocking rebinding scheme
that we have proposed, we use a simulation scenario with
a constant workload, where 120,000 agents travel across
Shenzhen, China generated using [88]. For each agent, a
tuple ⟨ts, id, x, y, speed, acc, laneId⟩ is emitted 25 times in
a second of wall clock time and delivered to all 150 queries
in the stream processing system. Our greedy rebinding policy
is re-evaluated every 2 seconds of wall-clock time to mimic a
high-intensity scenario.

Figure 2 depicts the performance results of our experiment,
evaluating the average latency of the queries while the sim-
ulation data are fed into the stream processing pipeline. The
results show that the non-blocking strategy has a consistently
lower latency than the blocking strategy. This is expected
because, with the blocking rebinding, threads implement a
“pause & resume” strategy, amplifying the housekeeping oper-
ation’s cost. In contrast, the non-blocking design permits each
thread to handle operator rebinding independently and on the
fly, eliminating the need for thread synchronisation.

To study the behaviour of our rebinding policy, we have
compared its performance against a static binding and a multi-
threaded scenario in which a single queue is used to extract
tuples for the operators to process. The static binding assigns
operators to threads using a round-robin assignment at startup.
No rebinding is carried out in this scenario. In the single
queue scenario, all tuples to process are kept in an Intel
TBB concurrent priority queue [89]. No binding policy is
applied: threads continuously check the queue and extract
tuples to process. In this case, we have also used a traffic
model running constantly 220,000 agents in CityMoS, limiting
the workload variations to the natural emergent complexity of
traffic. This is done with the intention of finding the limits of
the processing capacity of the system to simplify the study of
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the rebinding problem without further considering also natural
non-stationarity of traffic distributions in time.

Figure 3a reports the results of this experiment. As can be
seen, the average latency increases dramatically with the static
operator binding, and eventually it reaches a latency that is
unacceptable for real-time data processing. Upon investigation,
we discovered that with the static binding, only four threads,
on average, actively process tuples, while most remain idle for
most of the runtime. This is also expected, as the static policy
did not account for each operator’s complexity and varying
workload, leading to workload imbalances between threads at
runtime even with a constant number of agents being processed
by the simulator. When the system reaches the processing ca-
pacity limits, static binding performance degenerates quickly,
highlighting its fragility in complex setups. Our greedy policy
consistently maintains a stable and low processing latency
finding a balance between static and unnecessary operator
rebindings. The single queue design performs well initially,
maintaining a low query latency (< 20ms) for the first 9
seconds. However, as concurrency costs become dominant,
the latency subsequently increases. Figure 3b displays the
distribution of query latency. Our greedy policy serves 99.7%
of queries within a latency of less than 20ms throughout the
entire run. Although low-latency queries are observed in other
designs or policies, over 90% latency is greater than 90ms.

To complete our experimental assessment, we studied the
behaviour of the approaches considered when dealing with a
varying simulation workload. We have configured CityMoS to
simulate the road network of Shenzhen in China, simulating
4 hours (an interval representative of a regular morning of a
working day) starting at 8:00 am and ending at noon. The
maximum number of agents in the road network is 300,000.

The results of this experiment are reported in Figure 4a.
From the results, we can see that as the workload increases, the
average query latency rises accordingly for all configurations.
However, our greedy policy consistently provides the lowest
query latency and the latest stable query latency breaking point
(after 67 seconds). Under this dynamic workload scenario,
both the static assignment and single queue configurations
cannot cope with the increased workload very soon.
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Fig. 3: CityMos constant workload (220,000 agents)

Figure 4b displays the latency distribution of all config-
urations under this dynamic workload. Our greedy policy
consistently outperforms the other configurations across all
low-latency ranges, with 57% of queries below 10ms and
96% below 30ms. The static binding and the single queue
configurations have over 30% of queries exceeding 90ms
latency.

V. CONCLUSIONS

We have proposed a novel non-blocking operator rebinding
mechanism to optimise stream processing pipelines for sim-
ulation data by dynamically redistributing workloads among
worker threads on large-scale computing architectures. We
evaluated our approach using data from large-scale traffic
simulations, revealing substantial performance improvements.
The results show that our dynamic workload management not
only achieves lower latency and higher throughput but also
ensures better resource utilisation than conventional methods,
making it an effective solution for enhancing the efficiency and
responsiveness of stream processing systems in near-real-time
analytics.
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